Skip to main content
Log in

Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) High-Entropy Alloys: A First-Principles Study

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Effects of Mn content on mechanical properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) high-entropy alloys (HEAs) are investigated via first-principles calculations combining EMTO–CPA method. Related physical parameters, including lattice constant, elastic constants, elastic modulus, Pugh’s ratio, anisotropy factors, Poisson's ratio, Cauchy pressure, Vickers hardness, yield strength, and energy factor, are calculated as a function of Mn content. The results show that the resistances to bulk, elastic, and shear deformation decrease with increasing Mn content. Pugh’s ratio \({B \mathord{\left/ {\vphantom {B G}} \right. \kern-\nulldelimiterspace} G}\) indicates that the ductility of FeCoCrNiMnx HEAs has a remarkable reduction between 22 and 24% of Mn content. Meanwhile, Cauchy pressure suggests that the atomic bonding transforms from metallic to directional characteristic from 22 to 24% of Mn content. Vickers hardness and yield strength of FeCoCrNiMn HEA are intrinsically larger than those of FeCoCrNi HEA. Dislocation nucleation easily occurs in FeCoCrNiMn HEA compared to FeCoCrNi HEA, and large dislocation width in FeCoCrNiMn0.2 HEA results in low stacking-fault energy, which easily induces twinning deformation. This work provides a valuable insight for further theoretical and experimental study on the mechanical properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  2. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105 (2014)

    CAS  Google Scholar 

  3. H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, Mater. Sci. Eng. A 674, 203 (2016)

    CAS  Google Scholar 

  4. Z.P. Wang, Q.H. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018)

    Google Scholar 

  5. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, R.P. Liu, Intermetallics 70, 82 (2016)

    CAS  Google Scholar 

  6. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007)

    Google Scholar 

  7. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013)

    CAS  Google Scholar 

  8. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  9. Y.Z. Shi, B. Yang, P.K. Liaw, Metals 7, 1 (2017)

    Google Scholar 

  10. Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 2571 (2010)

    CAS  Google Scholar 

  11. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59, 6308 (2011)

    CAS  Google Scholar 

  12. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)

    CAS  Google Scholar 

  13. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26, 44 (2012)

    Google Scholar 

  14. J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Acta Mater. 151, 366 (2018)

    CAS  Google Scholar 

  15. N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 693, 394 (2017)

    CAS  Google Scholar 

  16. Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater. 120, 228 (2016)

    Google Scholar 

  17. Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, P.Q. Dai, Intermetallics 93, 228 (2018)

    CAS  Google Scholar 

  18. H. Luo, Z.M. Li, D. Raabe, Sci. Rep. 7, 9892 (2017)

    Google Scholar 

  19. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563, 546 (2018)

    CAS  Google Scholar 

  20. M.B. Kivy, M.A. Zaeem, Scr. Mater. 139, 83 (2017)

    Google Scholar 

  21. Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, Scr. Mater. 130, 96 (2017)

    CAS  Google Scholar 

  22. L. Vitos, Computational quantum mechanics for materials engineers: the EMTO method and applications (Springer, London, 2007)

    Google Scholar 

  23. P. Soven, Phys. Rev. 156, 809 (1967)

    CAS  Google Scholar 

  24. B.L. Gyorffy, Phys. Rev. B 5, 2382 (1972)

    Google Scholar 

  25. L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87, 156401 (2001)

    CAS  Google Scholar 

  26. X. Sun, H.L. Zhang, L. Song, X.D. Ding, Y.Z. Wang, L. Vitos, Acta Mater. 140, 366 (2017)

    CAS  Google Scholar 

  27. H.L. Zhang, X. Sun, S. Lu, Z.H. Dong, X.D. Ding, Y.Z. Wang, L. Vitos, Acta Mater. 155, 12 (2018)

    CAS  Google Scholar 

  28. X.Q. Li, J. Alloys Compd. 764, 906 (2018)

    CAS  Google Scholar 

  29. S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108, 44 (2015)

    CAS  Google Scholar 

  30. F.Y. Tian, L.K. Varga, N.X. Chen, L. Delczeg, L. Vitos, Phys. Rev. B 87, 075144 (2013)

    Google Scholar 

  31. F.Y. Tian, L. Delczeg, N.X. Chen, L.K. Varga, J. Shen, L. Vitos, Phys. Rev. B 88, 085128 (2013)

    Google Scholar 

  32. S. Huang, W. Li, X.Q. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, L. Vitos, Mater. Des. 103, 71 (2016)

    CAS  Google Scholar 

  33. B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter, J. Phys. F: Metal Phys. 15, 1337 (1985)

    CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  35. V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988)

    CAS  Google Scholar 

  36. L.A. Girifalco, V.G. Weizer, Phys. Rev. 114, 687 (1959)

    CAS  Google Scholar 

  37. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93, 269 (2018)

    CAS  Google Scholar 

  38. X.Q. Li, D.L. Irving, L. Vitos, Sci. Rep. 8, 11196 (2018)

    Google Scholar 

  39. A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013)

    CAS  Google Scholar 

  40. F.X. Zhang, S.J. Zhao, K. Jin, H. Bei, D. Popov, C.Y. Park, J.C. Neuefeind, W.J. Weber, Y.W. Zhang, Appl. Phys. Lett. 110, 011902 (2017)

    Google Scholar 

  41. A.J. Zhang, J.S. Han, B. Su, P.D. Li, J.H. Meng, Mater. Des. 114, 253 (2017)

    CAS  Google Scholar 

  42. C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H.B. Bei, M. Lang, R.C. Ewing, W.L. Mao, Nat. Commun. 8, 15634 (2017)

    CAS  Google Scholar 

  43. Z.C. Qiu, C.W. Yao, K. Feng, Z.G. Li, P.K. Chu, Int. J. Lightweight Mater. Manu. 1, 33 (2018)

    Google Scholar 

  44. J.H. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)

    CAS  Google Scholar 

  45. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Google Scholar 

  46. F.Y. Tian, L.K. Varga, J. Shen, L. Vitos, Comput. Mater. Sci. 111, 350 (2016)

    CAS  Google Scholar 

  47. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014)

    CAS  Google Scholar 

  48. K. Tanaka, T. Teramoto, R. Ito, MRS Adv. 2, 1429 (2017)

    CAS  Google Scholar 

  49. T. Teramoto, K. Yamada, R. Ito, K. Tanaka, J. Alloys Compd. 777, 1313 (2019)

    CAS  Google Scholar 

  50. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Sci. Rep. 6, 35863 (2016)

    CAS  Google Scholar 

  51. A. Haglund, M. Koehler, D. Catoor, E.P. George, V. Keppens, Intermetallics 58, 62 (2015)

    CAS  Google Scholar 

  52. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    CAS  Google Scholar 

  53. Y. Cao, J.C. Zhu, Z.S. Nong, X.W. Yang, Y. Liu, Z.H. Lai, Comp. Mater. Sci. 77, 208 (2013)

    CAS  Google Scholar 

  54. D. Iotova, N. Kioussis, S.P. Lim, Phys. Rev. B 54, 14413 (1996)

    CAS  Google Scholar 

  55. A. Gali, E.P. George, Intermetallics 39, 74 (2013)

    CAS  Google Scholar 

  56. M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 68, 184108 (2003)

    Google Scholar 

  57. H.Z. Fu, D.H. Li, F. Peng, T. Gao, X.L. Cheng, Comp. Mater. Sci. 44, 774 (2008)

    CAS  Google Scholar 

  58. K. Lau, A.K. Mccurdy, Phys. Rev. B 58, 8980 (1998)

    CAS  Google Scholar 

  59. H.Z. Fu, X.F. Li, W.F. Liu, Y.M. Ma, T. Gao, X.H. Hong, Intermetallics 19, 1959 (2011)

    CAS  Google Scholar 

  60. R.P. Ingel, D.L. Iii, J. Am. Ceram. Soc. 71, 265 (1988)

    CAS  Google Scholar 

  61. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)

    Google Scholar 

  62. H.Z. Fu, W.M. Peng, T. Gao, Mater. Chem. Phys. 115, 789 (2009)

    CAS  Google Scholar 

  63. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    CAS  Google Scholar 

  64. R.A. Johnson, Phys. Rev. B 37, 3924 (1988)

    CAS  Google Scholar 

  65. J.S. Tse, J. Superhard Mater. 32, 177 (2010)

    Google Scholar 

  66. F.M. Gao, J.L. He, E.D. Wu, S.M. Liu, D.L. Yu, D.C. Li, S.Y. Zhang, Y.J. Tian, Phys. Rev. Lett. 91, 015502 (2003)

    Google Scholar 

  67. A. Šimůnek, J. Vackář, Phys. Rev. Lett. 96, 085501 (2006)

    Google Scholar 

  68. K.Y. Li, X.T. Wang, F.F. Zhang, D.F. Xue, Phys. Rev. Lett. 100, 235504 (2008)

    Google Scholar 

  69. M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, Phys. Rev. Lett. 105, 115503 (2010)

    Google Scholar 

  70. X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Intermetallics 19, 1275 (2011)

    CAS  Google Scholar 

  71. A.J.E. Foreman, Acta Metall. 3, 322 (1955)

    CAS  Google Scholar 

  72. M.M. Savin, V.M. Chernov, A.M. Strokova, Phys. Status Solidi A 35, 747 (1976)

    CAS  Google Scholar 

  73. C.N. Reid, Acta Metall. 14, 13 (1966)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51501060), China Postdoctoral Science Foundation (No. 2018M642973), the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body at Hunan University (No. 31875004), the Key Laboratory of Guangdong Regular Higher Education (No. 2017KSYS012), the Foshan Key Technology Project (No. 1920001000409), the Guangzhou Technical Project (No. 201704030113), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110274), and the Foshan University Scientific Research Project (Nos. CGG07257 and BGH206017). The authors would like to deeply appreciate Prof. Levente Vitos for his developed codes of EMTO–CPA method. This work is carried out in National Supercomputer Centers in Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Wang or Touwen Fan.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Liu, Y., Wang, K. et al. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) High-Entropy Alloys: A First-Principles Study. Acta Metall. Sin. (Engl. Lett.) 34, 455–464 (2021). https://doi.org/10.1007/s40195-020-01114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01114-z

Keywords

Navigation