Skip to main content
Log in

Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Mg-RE (rear earth) alloys with long period stacking (LPSO) structures have great potential in biomedical applications. The present work focused on the microstructure and corrosion behaviors of Mg98.5Y1Zn0.5 alloys with 18R LPSO structure after equal channel angular pressing (ECAP). The results showed that the ECAP process changed the grain size and the distribution of LPSO particles thus controlled the total corrosion rates of Mg98.5Y1Zn0.5 alloys. During the ECAP process from 0p to 12p, the grain size reduced from 160–180 μm (as-cast) to 6–8 μm (12p). The LPSO structures became kinked (4p), then started to be broken into smaller pieces (8p), and at last comminuted to fine particles and redistributed uniformly inside the matrix (12p). The improvement in the corrosion resistance for ECAP samples was obtained from 0p to 8p, with the corrosion rate reduced from 3.24 mm/year (0p) to 2.35 mm/year (8p) in simulated body fluid, and the 12p ECAP alloy exhibited the highest corrosion rate of 4.54 mm/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Zhang, Q. Wang, F. Chen, Y. Wu, Z. Wang, Q. Wang, Mater. Lett. 212, 138 (2015)

    Google Scholar 

  2. L. Bao, Q. Le, Z. Zhang, C. Esling, Mater. Lett. 189, 235 (2019)

    Google Scholar 

  3. X. Zong, J. Zhang, W. Liu, Y. Zhang, Z. You, C. Xu, Adv. Eng. Mater. 1800017, 20 (2018)

    Google Scholar 

  4. L. Wang, J. Jiang, T. Yuan, Q. Xie, H. Liu, A. Ma, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00410-3

    Article  Google Scholar 

  5. M. Song, R. Zeng, Y. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X. Chen, J. Mater. Sci. Technol. 535, 35 (2019)

    Google Scholar 

  6. J. Liu, L. Yang, C. Zhang, B. Zhang, T. Zhang, Y. Li, K. Wu, F. Wang, J. Alloys Compd. 648, 782 (2019)

    Google Scholar 

  7. J. Zhang, S. Liu, R. Wu, L. Hou, M. Zhang, J. Magnes. Alloys 277, 6 (2018)

    Google Scholar 

  8. K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Acta Mater. 226, 163 (2019)

    Google Scholar 

  9. M. Ullmann, M. Schmidtchen, K. Kittner, T. Henseler, R. Kawalla, U. Prahl, Mater. Sci. Forum 57, 949 (2019)

    Google Scholar 

  10. M. El-Tahawy, K. Máthis, G. Garcés, T. Matsumoto, M. Yamasaki, Y. Kawamura, J. Gubicza, J. Alloys Compd. 629, 771 (2019)

    Google Scholar 

  11. H. Liu, H. Huang, C. Wang, J. Sun, J. Bai, F. Xue, A. Ma, X. Chen, Jom-Us 3314, 71 (2019)

    Google Scholar 

  12. H. Kim, A.J. Ross, S. Shang, Y. Wang, L.J. Kecskes, Z. Liu, Materialia 192, 4 (2018)

    Google Scholar 

  13. D. Xu, E. Han, Y. Xu, Prog. Nat. Sci. Mater. Int. 117, 26 (2016)

    Google Scholar 

  14. Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans. 1172, 42 (2001)

    Google Scholar 

  15. G. Garces, P. Pérez, R. Barea, J. Medina, A. Stark, N. Schell, P. Adeva, Metals 9, 221 (2019)

    CAS  Google Scholar 

  16. B. Wang, D. Xu, S. Wang, L. Sheng, R. Zeng, E. Han, Int. J. Fatigue 46, 120 (2019)

    Google Scholar 

  17. X. Zhang, Y. Wu, Y. Xue, Z. Wang, L. Yang, Mater. Lett. 42, 86 (2012)

    Google Scholar 

  18. X. Liu, D. Shan, Y. Song, E. Han, J. Magnes. Alloys 26, 5 (2017)

    Google Scholar 

  19. F. Cao, Z. Shi, G. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 176, 90 (2015)

    Google Scholar 

  20. Z. Gui, Z. Kang, Y. Li, J. Alloys Compd. 222, 685 (2016)

    Google Scholar 

  21. N. Saikrishna, G. Reddy, B. Munirathinam, B. Sunil, J. Magnes. Alloys 68, 4 (2016)

    Google Scholar 

  22. H. Wang, Y. Estrin, H. Fu, G. Song, Z. Zúberová, Adv. Eng. Mater. 967, 9 (2007)

    Google Scholar 

  23. G.M. Naik, S. Narendranath, S.S.S. Kumar, J. Mater. Eng. Perform. 2610, 28 (2019)

    Google Scholar 

  24. M. Gholami-Kermanshahi, V. Neubert, M. Tavakoli, F. Pastorek, B. Smola, V. Neubert, Adv. Eng. Mater. 1800121, 20 (2018)

    Google Scholar 

  25. Q. Xu, A. Ma, Y. Li, B. Saleh, Y. Yuan, J. Jiang, C. Ni, Materials 3503, 12 (2019)

    Google Scholar 

  26. J. Sun, B. Xu, Z. Yang, H. Zhou, J. Han, Y. Wu, D. Song, Y. Yuan, X. Zhuo, H. Liu, A. Ma, J. Alloys Compd. 152688, 817 (2019)

    Google Scholar 

  27. L. Wang, J. Jiang, A. Ma, Y. Li, D. Song, Metals 324, 7 (2017)

    Google Scholar 

  28. G. Garces, S. Cabeza, R. Barea, P. Pérez, P. Adeva, Materials (Basel, Switzerland) 733, 11 (2018)

    Google Scholar 

  29. H. Liu, H. Huang, X. Yang, C. Li, J. Yan, J. Jiang, A. Ma, J. Magnes. Alloys 231, 5 (2017)

    Google Scholar 

  30. Z. Geng, D. Xiao, L. Chen, J. Alloys Compd. 145, 686 (2016)

    Google Scholar 

  31. P. Pérez, S. Cabeza, G. Garcés, P. Adeva, Corros. Sci. 107, 107 (2016)

    Google Scholar 

  32. M. Esmaily, J. Svensson, S. Fajardo, N. Birbilis, G. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater. Sci. 92, 89 (2017)

    Google Scholar 

  33. G. Bi, J. Jiang, F. Zhang, D. Fang, Y. Li, Y. Ma, Y. Hao, J. Rare Earths 931, 34 (2016)

    Google Scholar 

  34. C. Li, D. Xu, Z. Zeng, B. Wang, L. Sheng, X. Chen, E.H. Han, Mater. Des. 430, 121 (2017)

    Google Scholar 

  35. A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K. Kainer, N. Hort, Mater. Sci. Eng. A 224, 595 (2014)

    Google Scholar 

  36. F. Cao, G. Song, A. Atrens, Corros. Sci. 835, 111 (2016)

    Google Scholar 

  37. A. Atrens, G. Song, M. Liu, Z. Shi, F. Cao, M. Dargusch, Adv. Eng. Mater. 400, 17 (2015)

    Google Scholar 

  38. G. Song, K. Unocic, Corros. Sci. 758, 98 (2015)

    Google Scholar 

  39. A. Atrens, G. Song, F. Cao, Z. Shi, P. Bowen, J. Magnes. Alloys 177, 1 (2013)

    Google Scholar 

  40. Z. Shi, A. Atrens, Corros. Sci. 226, 53 (2011)

    Google Scholar 

  41. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Yasuda, Y. Umakoshi, Acta Mater. 6282, 58 (2010)

    Google Scholar 

  42. X. Shi, Y. Long, H. Zhang, L. Chen, Y. Zhou, X. Yu, X. Yu, L. Cai, Z. Leng, Materials 498, 12 (2019)

    Google Scholar 

  43. G. Song, A. Atrens, Adv. Eng. Mater. 177, 9 (2007)

    Google Scholar 

  44. Z. Shi, J. Jia, A. Atrens, Corros. Sci. 296, 60 (2012)

    Google Scholar 

  45. G. Song, A. Atrens, D. John, X. Wu, J. Nairn, Corros. Sci. 1981, 39 (1997)

    Google Scholar 

  46. S. Lebouil, A. Duboin, F. Monti, P. Tabeling, P. Volovitch, K. Ogle, Electrochim. Acta 176, 124 (2014)

    Google Scholar 

  47. G. Frankel, A. Samaniego, N. Birbilis, Corros. Sci. 104, 70 (2013)

    Google Scholar 

  48. N. Birbilis, A. King, S. Thomas, G.S. Frankel, J. Scully, Electrochim. Acta 277, 132 (2014)

    Google Scholar 

  49. S. Gollapudi, Corros. Sci. 90, 62 (2012)

    Google Scholar 

  50. W. Zhou, T. Shen, N. Aung, Corros. Sci. 1035, 52 (2010)

    Google Scholar 

  51. J. Liu, L. Yang, C. Zhang, B. Zhang, T. Zhang, Y. Li, K. Wu, F. Wang, J. Mater. Sci. Technol. 1644, 35 (2019)

    Google Scholar 

  52. M. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 1939, 50 (2008)

    Google Scholar 

  53. Y. Ko, C. Yim, J. Lim, K. Shin, Mater. Sci. Forum 3, 419 (2003)

    Google Scholar 

  54. T. Zheng, Y. Hu, S. Yang, J. Magnes. Alloys 404, 5 (2017)

    CAS  Google Scholar 

  55. D. Orlov, K. Ralston, N. Birbilis, Y. Estrin, Acta Mater. 6176, 59 (2011)

    Google Scholar 

  56. H. Torbati-Sarraf, S.A. Torbati-Sarraf, A. Poursaee, T.G. Langdon, Corros. Sci. 90, 154 (2019)

    Google Scholar 

  57. K.D. Ralston, N. Birbilis, Corrosion 075005–075005-13, 66 (2010)

    Google Scholar 

  58. S.J. Splinter, R. Rofagha, N.S. Mcintyre, U. Erb, Surf. Interface Anal. 181, 24 (1996)

    Google Scholar 

  59. M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, P. Marcus, Corros. Sci. 1115, 51 (2009)

    Google Scholar 

  60. G. Williams, H. Mcmurray, J. Electrochem. Soc. C340, 155 (2008)

    Google Scholar 

  61. G. Williams, N. Birbilis, H. Mcmurray, Electrochem. Commun. 1, 36 (2013)

    Google Scholar 

  62. R. Mcnulty, J. Hanawalt, Trans. Electrochem. Soc. 423, 81 (1942)

    Google Scholar 

  63. N. Birbilis, G. Williams, K. Gusieva, A. Samaniego, M. Gibson, H. Mcmurray, Electrochem. Commun. 295, 34 (2013)

    Google Scholar 

  64. M. Taheri, J. Kish, N. Birbilis, M. Danaie, E. McNally, J. McDermid, Electrochim. Acta 396, 116 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51774109, 51979099 and 51901068), the Fundamental Research Funds for the Central Universities (No. 2018B690X14), the Natural Science Foundation of Jiangsu Province of China (No. BK20191303), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0570), the Key Research and Development Project of Jiangsu Province of China (No.BE2017148), and the Public Service Platform Program of Suqian City of China (No. M201614).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Hua Jiang or Huan Liu.

Additional information

Available online at https://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LS., Jiang, JH., Saleh, B. et al. Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process. Acta Metall. Sin. (Engl. Lett.) 33, 1180–1190 (2020). https://doi.org/10.1007/s40195-020-01042-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01042-y

Keywords

Navigation