Skip to main content
Log in

Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In order to better understand why the corrosion behavior of carbon steel exposed in Nansha atmospheric environment is very serious, the effect of sodium, potassium and magnesium chlorides deposited on carbon steel surface has been studied under atmosphere conditions by wet/dry accelerated test. The difference of corrosion behavior and surface structure in Na+, K+, and Mg2+ containing atmosphere has been investigated by thickness loss, scanning electron microscope, X-ray diffraction and electrochemical techniques. The results indicate that the thickness loss of carbon steel exposed in different metal cations containing atmospheric environment increases in the order of Na+, K+, Mg2+. The hard metal cation can promote the dissolution of the steel to a certain extent. In Mg2+ containing atmosphere, the relative content of β-FeOOH is rather higher and the protective ability index α*/γ* decreases in the order of Na+, K+, Mg2+. The corrosion current density of both bare carbon steel and the rusted carbon steel increases in the order of Na+, K+, Mg2+. The polarization resistance and the charge transfer resistance decreases in the order of Na+, K+, Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Stratmann, K. Bohnenkamp, H.-J. Engell, Corros. Sci. 969, 23 (1983)

    Google Scholar 

  2. D. de la Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Corros. Sci. 604, 53 (2011)

    Google Scholar 

  3. S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Corros. Sci. 1131, 49 (2007)

    Google Scholar 

  4. M. Morcillo, B. Chico, D. de la Fuente, J. Alcántara, I. Odnevall Wallinder, C. Leygraf, J. Electrochem. Soc. 8, 164 (2016)

    Google Scholar 

  5. M. Morcillo, B. Chico, J. Alcántara, I. Díaz, R. Wolthuis, D. de la Fuente, J. Electrochem. Soc. C426, 163 (2016)

    Google Scholar 

  6. D. de la Fuente, I. Díaz, J. Alcántara, B. Chico, J. Simancas, I. Llorente, A. García-Delgado, J.A. Jiménez, P. Adeva, M. Morcillo, Mater. Corros. 227, 67 (2016)

    Google Scholar 

  7. D.H. Xia, C. Ma, Y. Behnamian, S.S. Ao, S.Z. Song, L.K. Xu, Measuremeat 106946, 148 (2019)

    Google Scholar 

  8. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 2799, 48 (2006)

    Google Scholar 

  9. T. Nishimura, H. Katayama, K. Noda, T. Kodama, Corrosion 935, 56 (2000)

    Google Scholar 

  10. Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci. 997, 51 (2009)

    Google Scholar 

  11. K. Otani, M. Sakairi, R. Sasaki, A. Kaneko, Y. Seki, D. Nagasawa, J. Solid State Electrochem. 325, 18 (2013)

    Google Scholar 

  12. X.D. Liu, Y.D. Wang, M. Yan, Y.H. Wei, L.F. Hou, C.L. Guo, J. Taiyuan Univ. Technol. 676, 49 (2018). (in Chinese)

    Google Scholar 

  13. T. Prosek, D. Thierry, C. Taxén, J. Maixner, Corros. Sci. 2676, 49 (2007)

    Google Scholar 

  14. R. Lindström, J.-E. Svensson, L.G. Johansson, J. Electrochem. Soc. B57, 149 (2002)

    Google Scholar 

  15. M. Saiful Islam, K. Otani, M. Sakairi, Corros. Sci. 17, 131 (2018)

    Google Scholar 

  16. E. Schindelholz, B.E. Risteen, R.G. Kelly, J. Electrochem. Soc. C460, 161 (2014)

    Google Scholar 

  17. Y.W. Liu, J. Zhang, Y.H. Wei, Z.Y. Wang, Mater. Chem. Phys. 121855, 237 (2019)

    Google Scholar 

  18. S.H. Zhang, T. Shibata, T. Haruna, Corros. Sci. 1049, 47 (2005)

    Google Scholar 

  19. W. Gordy, W.J. Orville Thomas, J. Chem. Phys. 439, 24 (1956)

    Google Scholar 

  20. M. Misono, E.I. Ochiai, Y. Saito, Y. Yoneda, J. Inorg. Nucl. Chem. 2685, 29 (1967)

    Google Scholar 

  21. R.T. Foley, Corrosion 58, 26 (1970)

    Google Scholar 

  22. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, H. Uchida, Corros. Sci. 2492, 47 (2005)

    Google Scholar 

  23. Y.T. Ma, Y. Li, F.H. Wang, Mater. Chem. Phys. 844, 112 (2008)

    Google Scholar 

  24. Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, Y.Q. Sun, Corros. Sci. 1, 67 (2013)

    Google Scholar 

  25. M. Morcillo, J.M. González-Calbet, J.A. Jiménez, I. Díaz, J. Alcántara, B. Chico, A. Mazarío-Fernández, A. Gómez-Herrero, I. Llorente, D. de la Fuente, Corrosion 872, 71 (2015)

    Google Scholar 

  26. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, H.C. Shih, Corros. Sci. 1001, 47 (2005)

    Google Scholar 

  27. T. Misawa, K. Hashimoto, S. Shimodaira, Corros. Sci. 131, 14 (1974)

    Google Scholar 

  28. P. Dillmann, F. Mazaudier, S. Hœrlé, Corros. Sci. 1401, 46 (2004)

    Google Scholar 

  29. I. Matsushima, T. Ueno, Corros. Sci. 129, 11 (1971)

    Google Scholar 

  30. S.C. Chung, S.L. Sung, C.C. Hsien, H.C. Shih, J. Appl. Electrochem. 607, 30 (2000)

    Google Scholar 

  31. Y.Y. Chen, S.C. Chung, H.C. Shih, Corros. Sci. 3547, 48 (2006)

    Google Scholar 

  32. Y.J. Liu, Z.Y. Wang, W. Ke, Corros. Sci. 169, 80 (2014)

    Google Scholar 

  33. E. Schindelholz, B.E. Risteen, R.G. Kelly, J. Electrochem. Soc. C450, 161 (2014)

    Google Scholar 

  34. T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Corros. Sci. 279, 14 (1974)

    Google Scholar 

  35. J. Wang, Z.Y. Wang, W. Ke, Mater. Chem. Phys. 952, 124 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51671197) and the Strategic Priority Research Program of the Chinese Academy of Sciences XDA (No. 13040502)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yao Wang.

Additional information

Available online at https://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YW., Zhang, J., Lu, X. et al. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere. Acta Metall. Sin. (Engl. Lett.) 33, 1302–1310 (2020). https://doi.org/10.1007/s40195-020-01032-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01032-0

Keywords

Navigation