Skip to main content
Log in

Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In the present study, a series of in situ TiB/Ti6Al4V composites were fabricated using selective laser melting. The formability, microstructure evolution and mechanical properties of the as-built samples added with different contents of TiB2 were studied. It is found that the densification level is related to both the content of TiB2 and laser energy density. The added TiB2 reinforcement particle can spontaneously react with titanium and then form the TiB phase. The needle-like TiB phase tends to transform into dot-like particles with the decrease in energy density. Additionally, with the increase in TiB2 content, the TiB phase is coarsened due to the increased nucleation rate and more reactions. The grain morphology is found to largely depend on the translational speed of solid–fluid interface determined by the temperature gradient and cooling rate. Also, the microhardness of the as-built TiB/Ti6Al4V composites is obviously improved. More interestingly, as the energy density increases, the microhardness of the as-built TiB/Ti6Al4V composites firstly increases and then decreases due to the synergy of grain size and different morphologies and distribution of TiB phases. The wear resistance of TiB/Ti6Al4V composites is far superior to that of Ti6Al4V alloy owing to the increased microhardness resulted from the uniform distribution of the hard TiB phase in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.W. Ao, X.R. Chu, S.X. Lin, Y. Yang, J. Gao, Acta Metall. Sin. (Engl. Lett.) 31, 1287 (2018)

    Article  CAS  Google Scholar 

  2. Y. Han, H.R. Wang, Y.D. Cao, W.T. Hou, S.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 1007 (2019)

    Article  CAS  Google Scholar 

  3. C. Cui, B.M. Hu, L. Zhao, S. Liu, Mater. Des. 32, 1684 (2011)

    Article  CAS  Google Scholar 

  4. F. Li, Z. Wang, X. Zeng, Mater. Lett. 199, 79 (2017)

    Article  CAS  Google Scholar 

  5. J. Wang, X. Guo, L. Xiao, L. Wang, W. Lu, B. Li, Z. Li, D. Zhang, Acta Metall. Sin. (Engl. Lett.) 27, 205 (2014)

    Article  CAS  Google Scholar 

  6. L. Geng, L. Huang, Acta Metall. Sin. (Engl. Lett.) 27, 787 (2014)

    Article  CAS  Google Scholar 

  7. A.S. Patil, V.D. Hiwarkar, P.K. Verma, R.K. Khatirkar, J. Alloys Compd. 777, 165 (2019)

    Article  CAS  Google Scholar 

  8. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76, 13 (2014)

    Article  CAS  Google Scholar 

  9. M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen, H. Ding, J. Alloys Compd. 728, 436 (2017)

    Article  CAS  Google Scholar 

  10. M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, Mater. Sci. Eng. C 33, 875 (2013)

    Article  CAS  Google Scholar 

  11. C. Cai, B. Song, C. Qiu, L. Li, P. Xue, Q. Wei, J. Zhou, H. Nan, H. Chen, Y. Shi, J. Alloys Compd. 710, 364 (2017)

    Article  CAS  Google Scholar 

  12. L. Chen, Y. Yao, Acta Metall. Sin. (Engl. Lett.) 27, 762 (2014)

    Article  CAS  Google Scholar 

  13. D. Zhou, F. Qiu, H. Wang, Q. Jiang, Acta Metall. Sin. (Engl. Lett.) 27, 798 (2014)

    Article  CAS  Google Scholar 

  14. M. Moradi, M. Moazeni, H.R. Salimijazi, Vacuum 107, 34 (2014)

    Article  CAS  Google Scholar 

  15. N. Kang, P. Coddet, Q. Liu, H.L. Liao, C. Coddet, Addit. Manuf. 11, 1 (2016)

    Google Scholar 

  16. P. Chui, Vacuum 154, 25 (2018)

    Article  CAS  Google Scholar 

  17. D. Xu, W.J. Lu, Z.F. Yang, J.N. Qin, D. Zhang, J. Alloys Compd. 400, 216 (2005)

    Article  CAS  Google Scholar 

  18. S.W. Maseko, A.P.I. Popoola, O.S.I. Fayomi, Def. Technol. 14, 408 (2018)

    Article  Google Scholar 

  19. J.H. Tan, W.L.E. Wong, K.W. Dalgarno, Addit. Manuf. 18, 228 (2017)

    Google Scholar 

  20. S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, J. Alloys Compd. 771, 387 (2019)

    Article  CAS  Google Scholar 

  21. S. Luo, C. Zhao, Y. Su, Q. Liu, Z. Wang, Addit. Manuf. 31, 100925 (2020)

    CAS  Google Scholar 

  22. Y. Zhang, A. Bandyopadhyay, Addit. Manuf. 29, 100783 (2019)

    Google Scholar 

  23. X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao, M. Liu, J. Alloys Compd. 782, 209 (2019)

    Article  CAS  Google Scholar 

  24. L.Z. Wang, W.H. Wei, Acta Metall. Sin. (Engl. Lett.) 31, 807 (2018)

    Article  CAS  Google Scholar 

  25. P. Hu, Y.H. Zhou, J. Deng, S.L. Li, W.J. Chen, T. Chang, B.L. Hu, K.S. Wang, P.F. Feng, A.A. Volinsky, J. Alloys Compd. 745, 532 (2018)

    Article  CAS  Google Scholar 

  26. N.A. Rubinkovskii, D.P. Shornikov, A.V. Tenishev, A.G. Zaluzhnyi, A.G. Zholnin, Glas. Ceram. –Engl. Transl. Steklo I Keramika 76, 27 (2019)

    Article  CAS  Google Scholar 

  27. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trimble, Int. J. Mach. Tools Manuf. 128, 1 (2018)

    Article  Google Scholar 

  28. P. Petrov, C. Georgiev, G. Petrov, Vacuum 51, 339 (1998)

    Article  CAS  Google Scholar 

  29. D. Gu, Y. Yang, L. Xi, J. Yang, M. Xia, Opt. Laser Technol. 119, 105600 (2019)

    Article  CAS  Google Scholar 

  30. P. Tan, F. Shen, B. Li, K. Zhou, Mater. Des. 168, 107642 (2019)

    Article  CAS  Google Scholar 

  31. Z.Y. Hu, X.W. Cheng, S.L. Li, H.M. Zhang, H. Wang, Z.H. Zhang, F.C. Wang, J. Alloys Compd. 726, 240 (2017)

    Article  CAS  Google Scholar 

  32. X. Ma, C. Li, K. Bai, P. Wu, W. Zhang, J. Alloys Compd. 373, 194 (2004)

    Article  CAS  Google Scholar 

  33. B.G. Fu, H.W. Wang, C.M. Zou, Z.J. Wei, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 25, 2206 (2015)

    Article  CAS  Google Scholar 

  34. L.J. Huang, L. Geng, H.X. Peng, J. Zhang, Scr. Mater. 64, 844 (2011)

    Article  CAS  Google Scholar 

  35. B. Zhou, J. Zhou, H. Li, F. Lin, Mater. Sci. Eng. A 724, 1 (2018)

    Article  CAS  Google Scholar 

  36. P. Nandwana, N. Gupta, S.G. Srinivasan, R. Banerjee, Comput. Mater. Sci. 150, 197 (2018)

    Article  CAS  Google Scholar 

  37. Y. Tian, N. Chekir, X. Wang, A. Nommeots-Nomm, R. Gauvin, M. Brochu, Addit. Manuf. 24, 137 (2018)

    CAS  Google Scholar 

  38. A. Rai, H. Helmer, C. Körner, Addit. Manuf. 13, 124 (2017)

    Google Scholar 

  39. J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, D. Zuo, Comput. Mater. Sci. 53, 333 (2012)

    Article  CAS  Google Scholar 

  40. L.J. Huang, L. Geng, B. Wang, L.Z. Wu, Mater. Des. 45, 532 (2013)

    Article  CAS  Google Scholar 

  41. A.F. Manchón-Gordón, J.S. Blázquez, C.F. Conde, A. Conde, J. Alloys Compd. 675, 81 (2016)

    Article  CAS  Google Scholar 

  42. J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Rapid Prototyp. J. 23, 217 (2017)

    Article  Google Scholar 

  43. I. Sulima, P. Klimczyk, P. Malczewski, Acta Metall. Sin. (Engl. Lett.) 27, 12 (2014)

    Article  CAS  Google Scholar 

  44. N. Kang, W. Ma, F. Li, H. Liao, M. Liu, C. Coddet, Vacuum 154, 69 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Civil Aerospace Pre-research Project: research on additive manufacturing of core components in the liquid rocket engine, and the Fundamental Research Funds for the Central Universities (Nos. 2019kfyXMPY005 and 2019kfyXKJC042). The authors thank the Analytical and Testing Center and the State Key Laboratory of Materials Processing and Die & Mould Technology of Huazhong University of Science and Technology for tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Min Wang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Luo, SC., Meng, L. et al. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance. Acta Metall. Sin. (Engl. Lett.) 33, 774–788 (2020). https://doi.org/10.1007/s40195-020-01021-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01021-3

Keywords

Navigation