Skip to main content
Log in

Influence Factors Analysis of Fe–C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In the electromagnetic induction-controlled automated steel teeming (EICAST) technology of ladle, the height and location of the blocking layer are critical factors to determine the structure size and installation location of induction coil. And, they are also the key parameters affecting the successful implementation of this new technology. In this paper, the influence of the liquid steel temperature, the holding time and the alloy composition on the height and location of the blocking layer were studied by numerical simulation. The simulation results were verified by 40 t ladle industrial experiments. Moreover, the regulation approach of the blocking layer was determined, and the determination process of coil size and its installation location were also analyzed. The results show that the location of the blocking layer moves down with the increase in the liquid steel temperature and the holding time. The height of the blocking layer decreases with the increase in the liquid steel temperature; however, it increases with the increase in the holding time. The height and location of the blocking layer can be largely adjusted by changing the alloy composition of filling particles in the upper nozzle. When the liquid steel temperature is 1550 °C, the holding time is 180 min and the alloy composition is confirmed, the melting layer height is 120 mm, and the blocking layer height is 129 mm, which are beneficial to design and installation of induction coil. These results are very important for the industrial implementation of the EICAST technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.J. Lee, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 47, 1453 (2016)

    Article  CAS  Google Scholar 

  2. P.K. Singh, D. Mazumdar, Metall. Mater. Trans. B 49, 1945 (2018)

    Article  CAS  Google Scholar 

  3. L.G. Yu, J.J. Wang, Shandong Metall. 33, 14 (2011)

    Google Scholar 

  4. D.J. Li, X.A. Liu, Q. Wang, J.C. He, J. Northeast. Univ. 33, 661 (2012)

    CAS  Google Scholar 

  5. D.J. Li, X.A. Liu, Q. Wang, R.H. Ouyang, H.S. Chai, J.C. He, J. Iron Steel Res. 24, 16 (2012)

    Google Scholar 

  6. Z.Y. Deng, B. Glaser, M.A. Bombeck, D. Sichen, Steel Res. Int. 87, 921 (2016)

    Article  CAS  Google Scholar 

  7. A. Gao, Q. Wang, D.J. Li, B.G. Jin, K. Wang, J.C. He, Acta Metall. Sin. 46, 634 (2010). (in Chinese)

    Article  CAS  Google Scholar 

  8. Z.Y. Deng, B. Glaser, M.A. Bombeck, D. Sichen, Steel Res. Int. 87, 484 (2016)

    Article  CAS  Google Scholar 

  9. T.G. Wang, Z.H. Li, J. Hazard. Mater. B112, 63 (2004)

    Article  Google Scholar 

  10. A. Gao, D.J. Li, Q. Wang, K. Wang, B.G. Jin, K. Marukawa, J.C. He, ISIJ Int. 50, 1770 (2009)

    Article  Google Scholar 

  11. A. Gao, Q. Wang, B.G. Jin, J.C. He, J. Northeast. Univ. 31, 515 (2010)

    CAS  Google Scholar 

  12. D.J. Li, Q. Wang, X.A. Liu, A. Gao, X.B. Wang, J. Dong, K. Marukawa, J.C. He, J. Iron Steel Res. Int. 19, 766 (2012)

    Google Scholar 

  13. M. He, X.L. Li, Z.Q. Cao, S.L. Dong, T. Liu, Q. Wang, Vacuum 146, 130 (2017)

    Article  CAS  Google Scholar 

  14. Q. Wang, D.J. Li, X.A. Liu, X.B. Wang, J. Dong, J.C. He, J. Iron Steel Res. Int. 22, 30 (2015)

    Article  Google Scholar 

  15. Q. Wang, M. He, X.W. Zhu, X.L. Li, C.L. Wu, S.L. Dong, T. Liu, Acta Metall. Sin. 54, 228 (2018). (in Chinese)

    CAS  Google Scholar 

  16. X.A. Liu, Q. Wang, D.J. Li, G.L. Li, D.Q. Geng, A. Gao, J.C. He, ISIJ Int. 54, 482 (2014)

    Article  CAS  Google Scholar 

  17. C.Y. Shi, J.C. He, Mater. Trans. 59, 39 (2018)

    Article  CAS  Google Scholar 

  18. M. He, X.L. Li, X.A. Liu, X.W. Zhu, T. Liu, Q. Wang, Acta Metall. Sin. (Engl. Lett.) 32, 391 (2019)

    Article  CAS  Google Scholar 

  19. W.H. Tong, F.M. Shen, H. Shibata, W.Z. Wang, Y.S. Yang, Y. Waseda, R. Takahashi, J.I. Yagi, Acta Metall. Sin. 38, 983 (2002). (in Chinese)

    CAS  Google Scholar 

  20. S.M. Yang, W.Q. Tao, Heat Transfer (Higher Education Press, Beijing, 2006), p. 555. (in Chinese)

    Google Scholar 

  21. Z.B. Fu, Induction Heating and Energy Conservation (China Machine Press, Beijing, 2008), p. 28. (in Chinese)

    Google Scholar 

  22. E. Abbasi, Q.S. Luo, D. Owens, Acta Metall. Sin. (Engl. Lett.) 32, 74 (2019)

    Article  CAS  Google Scholar 

  23. W.B. Gao, D.P. Wang, F.J. Cheng, C.Y. Deng, W. Xu, Acta Metall. Sin. (Engl. Lett.) 28, 1097 (2015)

    Article  CAS  Google Scholar 

  24. A. Gao, Q. Wang, D.J. Li, H.S. Chai, L.J. Zhao, J.C. He, Acta Metall. Sin. 47, 219 (2011). (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. U1560207) and the Liaoning Innovative Research Team in University (Grant No. LT2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Li, XL., Wang, QW. et al. Influence Factors Analysis of Fe–C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology. Acta Metall. Sin. (Engl. Lett.) 33, 671–678 (2020). https://doi.org/10.1007/s40195-019-00957-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00957-5

Keywords

Navigation