Advertisement

Effect of Co on Microstructure and Stress Rupture Properties of K4750 Alloy

  • Xiao-Xiao Li
  • Mei-Qiong OuEmail author
  • Min Wang
  • Xian-Chao Hao
  • Ying-Che MaEmail author
  • Kui Liu
Article
  • 18 Downloads

Abstract

The effects of substituting Co for Fe on the microstructure and stress rupture properties of K4750 alloy were studied. The microstructure of the alloy without Co (K4750 alloy) and the alloy containing Co (K4750-Co alloy) were analyzed. Substitution of Co for Fe inhibited the decomposition of MC carbide and the precipitation of η phase during long-term aging treatment. In K4750-Co alloy, the morphology of MC carbide at the grain boundary (GB) remained dispersed blocky shape and no η phase was observed after aging at 750 °C for 3000 h. However, in K4750 alloy, almost all the MC carbides at GBs broke down into granular M23C6 carbide and needle-like η phase. The addition of cobalt could delay the decomposition of MC carbides, which accordingly restricted the elemental supply for the formation of η phase. The stress rupture tests were conducted on two alloys at 750 °C/430 MPa. When Co is substituted for Fe in K4750 alloy, the stress rupture life increased from 164.10 to 264.67 h after standard heat treatment. This was mainly attributed to increased concentration of Al, Ti and Nb in γ′ phase in K4750-Co alloy, which further enhanced the strengthening effect of γ′ phase. After aging at 750 °C for 3000 h, substitution of Co for Fe can also cause the stress rupture life at 750 °C/430 MPa to increase from 48.72 to 208.18 h. The reason was mainly because MC carbide degradation and η phase precipitation in K4750 alloy, which promoted the initiation and propagation of micro-crack during stress rupture testing.

Keywords

Nickel-based superalloy Co addition MC degradation Stress rupture property 

References

  1. [1]
    R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  2. [2]
    C.T. Sims, W.C. Hagel, The Superalloys-Vital High Temperature Gas Turbine Materials for Aerospace and Industrial Power (Wiley, New York, 1972)Google Scholar
  3. [3]
    T.M. Pollock, S. Tin, J. Propuls. Power 22, 361 (2006)CrossRefGoogle Scholar
  4. [4]
    X. Xin, W.H. Zhang, L.X. Yu, F. Liu, Mater. Sci. Forum 816, 613 (2015)CrossRefGoogle Scholar
  5. [5]
    W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 479, 148 (2008)CrossRefGoogle Scholar
  6. [6]
    Y. Yuan, Y.F. Gu, C.Y. Cui, T. Osada, Z.H. Zhong, T. Tetsui, T. Yokokawa, H. Harada, MRS Bull. 26, 2833 (2011)Google Scholar
  7. [7]
    L.Z. Zhuang, G.L. Chen, J.L. Xu, Mater. Mech. Eng. 2, 11 (1987)Google Scholar
  8. [8]
    M.Q. Ou, X.C. Hao, B.F. Wan, T. Liang, Y.C. Ma, K. Liu, J. Mater. Sci. Technol. 33, 1300 (2017)CrossRefGoogle Scholar
  9. [9]
    X.C. Hao, L. Zhang, X. Zhao, T. Liang, Y.C. Ma, K. Liu, Mater. Sci. Forum 816, 586 (2015)CrossRefGoogle Scholar
  10. [10]
    M.Q. Ou, Y.C. Ma, H.L. Ge, B. Chen, S.J. Zheng, K. Liu, Mater. Sci. Eng. A 736, 76 (2018)CrossRefGoogle Scholar
  11. [11]
    W.Z. Wang, T. Jin, J.L. Liu, Mater. Sci. Eng. A 479, 148 (2008)CrossRefGoogle Scholar
  12. [12]
    M. Nathal, L. Ebert, Metall. Mater. Trans. A 16, 1863 (1985)CrossRefGoogle Scholar
  13. [13]
    Q.Y. Shi, X.F. Ding, M.L. Wang, Metall. Mater. Trans. A 45, 1833 (2014)CrossRefGoogle Scholar
  14. [14]
    G.L. Chen, L.Z. Zhuang, J.L. Xu, Acta Metall. Sin. 22, 453 (1987). (in Chinese) Google Scholar
  15. [15]
    S. Ma, L. Carrol, T.M. Pollock, Acta Mater. 55, 5802 (2007)CrossRefGoogle Scholar
  16. [16]
    C.Y. Cui, Y.F. Gu, Y. Yuan, H. Harada, Scr. Mater. 64, 502 (2011)CrossRefGoogle Scholar
  17. [17]
    F. Xue, H.J. Zhou, Q. Feng, MATEC Web Conf. 14, 15002 (2014)CrossRefGoogle Scholar
  18. [18]
    C.M.F. Rae, R.C. Reed, Acta Mater. 49, 4113 (2001)CrossRefGoogle Scholar
  19. [19]
    G. Lvov, V.I. Levit, M.J. Kaufman, Metall. Mater. Trans. A 35, 1669 (2004)CrossRefGoogle Scholar
  20. [20]
    W. Sun, X.Z. Qin, J.T. Guo, L.H. Lou, L.Z. Zhou, Acta Metall. Sin. 52, 455 (2016). (in Chinese) Google Scholar
  21. [21]
    J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. 41, 6476 (2006)CrossRefGoogle Scholar
  22. [22]
    J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 429, 341 (2006)CrossRefGoogle Scholar
  23. [23]
    S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, K. Ogi, Metall. Mater. Trans. A 38, 883 (2007)CrossRefGoogle Scholar
  24. [24]
    J. Wang, Master thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011 (in Chinese)Google Scholar
  25. [25]
    Y.L. Xu, L. Zhang, J. Li, X.S. Xiao, X.L. Cao, G.Q. Jia, Z. Shen, Mater. Sci. Eng. A 544, 48 (2012)CrossRefGoogle Scholar
  26. [26]
    G.N. Maniar, J.E. Bridge, Metall. Trans. 2, 95 (1971)CrossRefGoogle Scholar
  27. [27]
    G.N. Maniar, J.E. Bridge, H.M. James, Metall. Trans. 2, 1484 (1971)CrossRefGoogle Scholar
  28. [28]
    J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, Acta Mater. 53, 4623 (2005)CrossRefGoogle Scholar
  29. [29]
    T. Link, A. Epishin, B. Fedelich, Philos. Mag. 89, 1141 (2009)CrossRefGoogle Scholar
  30. [30]
    X.M. Dong, X.L. Zhang, K. Du, Y.Z. Zhou, T. Jin, H.Q. Ye, J. Mater. Sci. Technol. 28, 1031 (2012)CrossRefGoogle Scholar
  31. [31]
    X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, H.Q. Ye, Mater. Sci. Eng. A 485, 74 (2008)CrossRefGoogle Scholar
  32. [32]
    M.E. Kassner, T.A. Hayes, Int. J. Plast. 19, 1715 (2003)CrossRefGoogle Scholar
  33. [33]
    T. Krol, D. Baither, E. Nembach, Acta Mater. 52, 2095 (2004)CrossRefGoogle Scholar
  34. [34]
    C.N. Wei, H.Y. Bor, L. Chang, J. Alloys Compd. 509, 5708 (2011)CrossRefGoogle Scholar
  35. [35]
    Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Charact. 96, 28 (2014)CrossRefGoogle Scholar
  36. [36]
    M.Q. Ou, X.C. Hao, Y.C. Ma, R.C. Liu, L. Zhang, K. Liu, J. Alloys Compd. 732, 107 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations