Skip to main content
Log in

Reduction in Microsegregation in Al–Cu Alloy by Alternating Magnetic Field

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The microsegregation behavior of the Al-4.5 wt%Cu alloy solidified at different cooling rates under the alternating magnetic field (AMF) was investigated. The experimental results showed that the amount of non-equilibrium eutectics in the interdendritic region decreased upon applying the AMF at the same cooling rate. The change in microsegregation could be explained quantificationally by the modifications of dendritic coarsening, solid-state back diffusion and convection in the AMF. The enhanced diffusivity in the solid owing to the AMF was beneficial for the improvement in microsegregation compared to the cases without an AMF. In contrast, the enhanced dendritic coarsening and forced convection in the AMF were found to aggravate the microsegregation level. Considering the contributions of the changes in above factors, an increase in solid diffusivity was found to be primarily responsible for the reduced microsegregation in the AMF. In addition, the microsegregation in the AMF was modeled using the analytical model developed by Voller. The calculated and experimental results were in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Smith, Metall. Mater. Trans. B 49, 6 (2018)

    Google Scholar 

  2. J.T. Yue, F.W. Voltmer, J. Cryst. Growth 29, 3 (1975)

    Google Scholar 

  3. R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au, in Superalloy, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 801

    Google Scholar 

  4. L. Ling, Y. Han, W. Zhou, H. Gao, D. Shu, J. Wang, M. Kang, B. Sun, Metall. Mater. Trans. A 46, 1 (2015)

    Google Scholar 

  5. M. Paliwal, D.H. Kang, E. Essadiqi, I.H. Jung, Metall. Mater. Trans. A 45, 8 (2014)

    Google Scholar 

  6. R. Guo, C. Li, S. He, J. Wang, W. Xuan, X. Li, Y. Zhong, Z. Ren, Jpn. J. Appl. Phys. 57, 8 (2018)

    Google Scholar 

  7. J. Wang, Y. He, J. Li, C. Li, H. Kou, P. Zhang, E. Beaugnon, Mater. Chem. Phys. 225, 133 (2019)

    CAS  Google Scholar 

  8. L. Hou, Y. Dai, Y. Fautrelle, Z. Li, Z. Ren, C. Esling, X. Li, J. Alloys Compd. 758, 25 (2018)

    Google Scholar 

  9. Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31, 681 (2018)

    CAS  Google Scholar 

  10. Q. Wang, T. Liu, K. Wang, P. Gao, Y. Liu, J. He, ISIJ Int. 54, 3 (2014)

    CAS  Google Scholar 

  11. J. Wang, X. Lin, Y. Fautrelle, H. Nguyen-Thi, Z. Ren, Metall. Mater. Trans. B 49, 3 (2018)

    Google Scholar 

  12. C. Stelian, Y. Delannoy, Y. Fautrelle, T. Duffar, J. Cryst. Growth 266, 1 (2004)

    Google Scholar 

  13. C. Stelian, Y. Delannoy, Y. Fautrelle, T. Duffar, J. Cryst. Growth 275, 1 (2005)

    Google Scholar 

  14. D. Chen, H. Zhang, H. Jiang, J. Cui, Materialwiss. Werkstofftech. 42, 6 (2011)

    CAS  Google Scholar 

  15. C. Li, Y.D. Yu, Mater. Sci. Eng. A 559, 22 (2013)

    CAS  Google Scholar 

  16. F. Wang, L. Zhang, A. Deng, X. Xu, E. Wang, Metals 6, 1 (2015)

    Google Scholar 

  17. A. Roósz, E. Halder, H.E. Exner, Mater. Sci. Technol. 1, 12 (1985)

    Google Scholar 

  18. T. Kraft, Y.A. Chang, Metall. Mater. Trans. A 29, 9 (1998)

    Google Scholar 

  19. T. Himemiya, T. Umeda, ISIJ Int. 38, 7 (1998)

    Google Scholar 

  20. V.R. Voller, J. Cryst. Growth 226, 4 (2001)

    Google Scholar 

  21. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, Y. Fautrelle, Metall. Mater. Trans. B 41, 1 (2010)

    Google Scholar 

  22. V.R. Voller, Int. J. Heat Mass Transf. 43, 11 (2000)

    Google Scholar 

  23. M.N. Gungor, Metall. Trans. A 20, 11 (1989)

    Google Scholar 

  24. W.V. Youdelis, R.C. Dorward, Can. J. Phys. 44, 1 (1966)

    Google Scholar 

  25. D.H. Kirkwood, Mater. Sci. Eng. 65, 1 (1984)

    Google Scholar 

  26. V.R. Voller, S. Sundarraj, Mater. Sci. Technol. 9, 6 (1993)

    Google Scholar 

  27. T. Kraft, M. Rettenmayr, H.E. Exner, Model. Simul. Mater. Sci. Eng. 4, 2 (1996)

    Google Scholar 

  28. M. Basaran, Metall. Trans. A 12, 7 (1981)

    Google Scholar 

  29. A. Mortensen, Metall. Trans. A 20, 2 (1989)

    Google Scholar 

  30. D.H. Kirkwood, Mater. Sci. Eng. 73, 1 (1985)

    Google Scholar 

  31. Y. Aoki, S. Hayashi, H. Komatsu, J. Cryst. Growth 123, 1 (1992)

    Google Scholar 

  32. Z. Sun, X. Guo, M. Guo, C. Li, J. Vleugels, Z. Ren, O. Van der Biest, B. Blanpain, J. Phys. Chem. C 116, 33 (2012)

    Google Scholar 

  33. M.E. Glicksman, Principles of Solidification (Springer, New York, 2011), pp. 345–368

    Google Scholar 

  34. E.C. Kurum, H.B. Dong, J.D. Hunt, Metall. Mater. Trans. A 36, 11 (2005)

    Google Scholar 

  35. H.D. Brody, Dissertation, Massachusetts Institute of Technology, 1965

  36. T.W. Clyne, W. Kurz, Metall. Trans. A 12, 6 (1981)

    Google Scholar 

  37. X. Liu, J. Cui, F. Yu, J. Mater. Sci. 39, 8 (2004)

    Google Scholar 

  38. X. Liu, J. Cui, Y. Guo, X. Wu, J. Zhang, Mater. Lett. 58, 9 (2004)

    Google Scholar 

  39. X. Liu, J. Cui, X. Wu, Y. Guo, J. Zhang, Scr. Mater. 52, 1 (2005)

    CAS  Google Scholar 

  40. C. Li, S. He, Y. Fan, H. Engelhardt, S. Jia, W. Xuan, X. Li, Y. Zhong, Z. Ren, Appl. Phys. Lett. 110, 7 (2017)

    Google Scholar 

  41. C. Li, S. He, H. Engelhardt, T. Zhan, W. Xuan, X. Li, Y. Zhong, Z. Ren, M. Rettenmayr, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  42. M.J. Hordon, B.L. Averbach, Acta Metall. 9, 3 (1961)

    Google Scholar 

  43. M. Molotskii, V. Fleurov, Phys. Rev. Lett. 78, 14 (1997)

    Google Scholar 

  44. G.P.P. Pun, Y. Mishin, Acta Mater. 57, 18 (2009)

    Google Scholar 

  45. T.G. Stoebe, H.I. Dawson, Phys. Rev. 166, 3 (1968)

    Google Scholar 

  46. V. Galindo, G. Gerbeth, W. von Ammon, E. Tomzig, J. Virbulis, Energy Convers. Manag. 43, 3 (2002)

    Google Scholar 

  47. A. Mitric, T. Duffar, C.D. Guerra, V. Corregidor, L.C. Alves, C. Garnier, G. Vian, J. Cryst. Growth 287, 2 (2006)

    Google Scholar 

  48. A. Ghofrani, M.H. Dibaei, A.H. Sima, M.B. Shafii, Exp. Therm. Fluid. Sci. 49, 193 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. U1560202, 51690162 and 51604171), Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602), Shanghai Pujiang Program (No. 18PJ1403700), the program of China Scholarships Council (No. 201806890052) and the National Science and Technology Major Project “Aeroengine and Gas Turbine” (No. 2017-VII-0008-0102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Jun Li or Jiang Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, SY., Li, CJ., Zhan, TJ. et al. Reduction in Microsegregation in Al–Cu Alloy by Alternating Magnetic Field. Acta Metall. Sin. (Engl. Lett.) 33, 267–274 (2020). https://doi.org/10.1007/s40195-019-00933-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00933-z

Keywords

Navigation