Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1253–1260 | Cite as

Inducing Macrophages M2 Polarization by Dexamethasone Laden Mesoporous Silica Nanoparticles from Titanium Implant Surface for Enhanced Osteogenesis

  • Jing Luo
  • Xin Ding
  • Wen SongEmail author
  • Jian-Ying Bai
  • Jing Liu
  • Zhe Li
  • Fan-Hui Meng
  • Fang-Hao Chen
  • Yu-Mei ZhangEmail author


The study conveys an idea to enhance the osseointegration of titanium implant (Ti) through modulating macrophages M2 polarization. The ~ 100 nm spherical mesoporous silica nanoparticles (MSN) that compromised of ~ 4-nm-diameter nano-tunnels were synthesized by the conventional “sol–gel” method, into which the dexamethasone (DEX) was loaded (DEX@MSN). The DEX@MSN could consistently release DEX and showed favorable cytocompatibility in RAW264.7 cells. The arginase-1 expression, a specific marker for macrophages M2 polarization, was also enhanced by DEX@MSN treatment. Then, the Ti was pre-treated with anodization under 5 V to generate the titania nanotubes with ~ 30 nm diameter (NT-30) and the DEX@MSN was introduced onto NT-30 surface via electrophoretic deposition, with the aid of chitosan. After optimizing the deposition parameters, the supernatants of RAW264.7 from the decorated implant surface could significantly promote the osteogenic differentiation of murine primary bone marrow mesenchymal stem cells. These findings demonstrate that delivery of DEX from implant surface can modulate the macrophages M2 polarization and result in favorable osteogenesis.


Macrophages polarization Titanium implant Osteogenesis Dexamethasone Mesoporous silica nanoparticles Electrophoretic deposition 



This work was supported by the National Natural Science Foundation of China (Nos. 31800790, 81530051 and 31670966).


  1. [1]
    H. Kang, S. Kim, D. Wong, H.J. Jung, S. Lin, K. Zou, R. Li, G. Li, V.P. Dravid, L. Bian, Nano Lett. 17, 6415 (2017)CrossRefGoogle Scholar
  2. [2]
    P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, Front. Phys. 9, 419 (2018)CrossRefGoogle Scholar
  3. [3]
    J. Wang, S. Qian, X. Liu, L. Xu, X. Miao, Z. Xu, L. Cao, H. Wang, X. Jiang, J. Mater. Chem. B 5, 3364 (2017)CrossRefGoogle Scholar
  4. [4]
    D.M. Mosser, J.P. Edwards, Nat. Rev. Immunol. 8, 958 (2008)CrossRefGoogle Scholar
  5. [5]
    K.L. Spiller, S. Nassiri, C.E. Witherel, R.R. Anfang, J. Ng, K.R. Nakazawa, T. Yu, G. Vunjak-Novakovic, Biomaterials 37, 194 (2015)CrossRefGoogle Scholar
  6. [6]
    R. Sridharan, A.R. Cameron, D.J. Kelly, C.J. Kearney, F.J.O. Brien, Mater. Today 18, 313 (2015)CrossRefGoogle Scholar
  7. [7]
    B. Cha, S.R. Shin, J. Leijten, Y. Li, S. Singh, J.C. Liu, N. Annabi, R. Abdi, M.R. Dokmeci, N.E. Vrana, A.M. Ghaemmaghami, A. Khademhosseini, Adv. Healthc. Mater. 6, 1700289 (2017)CrossRefGoogle Scholar
  8. [8]
    D. Hachim, S.T. LoPresti, C.C. Yates, B.N. Brown, Biomaterials 112, 95 (2017)CrossRefGoogle Scholar
  9. [9]
    P. Li, Y. Zheng, X. Chen, Front. Pharmacol. 8, 460 (2017)CrossRefGoogle Scholar
  10. [10]
    S. Tedesco, C. Bolego, A. Toniolo, A. Nassi, G.P. Fadini, M. Locati, A. Cignarella, Immunobiology 220, 545 (2015)CrossRefGoogle Scholar
  11. [11]
    O. Ghali, O. Broux, G. Falgayrac, N. Haren, J.P. van Leeuwen, G. Penel, P. Hardouin, C. Chauveau, BMC Cell Biol. 16, 9 (2015)CrossRefGoogle Scholar
  12. [12]
    T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J.I. Zink, A.E. Nel, ACS Nano 3, 3273 (2009)CrossRefGoogle Scholar
  13. [13]
    X. Zhou, W. Feng, K. Qiu, L. Chen, W. Wang, W. Nie, X. Mo, C. He, A.C.S. Appl, Mater. Interfaces 7, 15777 (2015)CrossRefGoogle Scholar
  14. [14]
    J. Wang, F. Meng, W. Song, J. Jin, Q. Ma, D. Fei, L. Fang, L. Chen, Q. Wang, Y. Zhang, Int. J. Nanomed. 13, 4029 (2018)CrossRefGoogle Scholar
  15. [15]
    A.L. Doedens, C. Stockmann, M.P. Rubinstein, D. Liao, N. Zhang, D.G. DeNardo, L.M. Coussens, M. Karin, A.W. Goldrath, R.S. Johnson, Cancer Res. 70, 7465 (2010)CrossRefGoogle Scholar
  16. [16]
    J. Ikeda, T. Ichiki, H. Matsuura, E. Inoue, J. Kishimoto, A. Watanabe, C. Sankoda, S. Kitamoto, T. Tokunou, K. Takeda, G.H. Fong, K. Sunagawa, J. Am. Heart Assoc. 2, e178 (2013)CrossRefGoogle Scholar
  17. [17]
    Y. Qian, X. Guo, L. Che, X. Guan, B. Wu, R. Lu, M. Zhu, H. Pang, Y. Yan, Z. Ni, L. Gu, Cell Physiol. Biochem. 45, 2268 (2018)CrossRefGoogle Scholar
  18. [18]
    K. Qiu, B. Chen, W. Nie, X. Zhou, W. Feng, W. Wang, L. Chen, X. Mo, Y. Wei, C. He, A.C.S. Appl, Mater. Interfaces 8, 4137 (2016)CrossRefGoogle Scholar
  19. [19]
    C. Liang, Y. Hu, H. Wang, D. Xia, Q. Li, J. Zhang, J. Yang, B. Li, H. Li, D. Han, M. Dong, Biomaterials 103, 170 (2016)CrossRefGoogle Scholar
  20. [20]
    F. Loi, L.A. Córdova, R. Zhang, J. Pajarinen, T. Lin, S.B. Goodman, Z. Yao, Stem Cell Res. Ther. 7, 15 (2016)CrossRefGoogle Scholar
  21. [21]
    U. Olgun, M. Gülfen, F. Üstelü, H. Arslan, Acta Metall. Sin. (Engl. Lett.) 31, 153 (2018)CrossRefGoogle Scholar
  22. [22]
    K. Siuzdak, M. Szkoda, J. Karczewski, J. Ryl, K. Darowicki, K. Grochowska, Acta Metall. Sin. (Engl. Lett.) 30, 1210 (2017)CrossRefGoogle Scholar
  23. [23]
    H. Lu, J. Wang, T. Wang, J. Zhong, Y. Bao, H. Hao, J. Nanomater. 2016, 20 (2016)Google Scholar
  24. [24]
    R.K. Koninti, S. Palvai, S. Satpathi, S. Basu, P. Hazra, Nanoscale 8, 18436 (2016)CrossRefGoogle Scholar
  25. [25]
    T. Heikkilä, H.A. Santos, N. Kumar, D.Y. Murzin, J. Salonen, T. Laaksonen, L. Peltonen, J. Hirvonen, V. Lehto, Eur. J. Pharm. Biopharm. 74, 483 (2010)CrossRefGoogle Scholar
  26. [26]
    S. Lee, M.S. Kim, D. Lee, T.K. Kwon, D. Khang, H.S. Yun, S.H. Kim, Int. J. Nanomed. 8, 147 (2013)Google Scholar
  27. [27]
    L. Chen, J. Liu, Y. Zhang, G. Zhang, Y. Kang, A. Chen, X. Feng, L. Shao, Nanomedicine-UK 13, 1939 (2018)CrossRefGoogle Scholar
  28. [28]
    J. Wang, Y. Yu, K. Lu, M. Yang, Y. Li, X. Zhou, Z. Sun, Int. J. Nanomed. 12, 809 (2017)CrossRefGoogle Scholar
  29. [29]
    J. Sun, X. Liu, L. Meng, W. Wei, Y. Zheng, Langmuir 30, 11002 (2014)CrossRefGoogle Scholar
  30. [30]
    R. Hu, C. Lin, H. Shi, H. Wang, Mater. Chem. Phys. 115, 718 (2009)CrossRefGoogle Scholar
  31. [31]
    X. Lu, Y. Leng, Q. Zhang, Surf. Coat. Technol. 202, 3142 (2008)CrossRefGoogle Scholar
  32. [32]
    W. Song, L. Zhao, K. Fang, B. Chang, Y. Zhang, J. Mater. Chem. B 3, 8567 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing Luo
    • 1
    • 2
  • Xin Ding
    • 3
  • Wen Song
    • 1
    Email author
  • Jian-Ying Bai
    • 1
  • Jing Liu
    • 1
  • Zhe Li
    • 1
  • Fan-Hui Meng
    • 4
  • Fang-Hao Chen
    • 1
  • Yu-Mei Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
  2. 2.Department of StomatologyGeneral Hospital of Southern Theater Command of the Chinese People’s Liberation ArmyGuangzhouChina
  3. 3.Huaian Stomatological HospitalHuaianChina
  4. 4.State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Dental Materials, School of StomatologyThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations