Skip to main content
Log in

Atomic Structure of Cu49Hf42Al9 Metallic Glass with High Glass-Forming Ability and Plasticity

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Electron diffraction was used to study the local atomic structure of Cu49Hf42Al9 metallic glasses (MGs). The amorphous nature of the MG was fully retained after the compression test. The partial radial distribution functions (PRDFs) of the MG structure obtained from the atomic model using reverse Monte Carlo and density functional theory optimization display that the peaks of the first nearest-neighbour distances for Cu–Cu, Hf–Cu and Hf–Hf atomic pairs were located at 2.56 Å, 2.78 Å and 3.23 Å, respectively. The wide distribution of PRDF for Hf–Hf atomic pair explained the high plasticity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Yang, X.H. Fan, B. Li, Y.H. Li, X. Wang, X.X. Xu, Acta Metall. Sin. (Engl. Lett.) 31, 290 (2018)

    Article  Google Scholar 

  2. Y. Dong, R. Wunderlich, J. Biskupek, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, H.J. Fecht, Scripta Mater. 137, 94 (2017)

    Article  Google Scholar 

  3. J.J. Liu, R. Li, L.X. Fang, J. Wang, T. Zhang, Acta Metall. Sin. (Engl. Lett.) 29, 129 (2016)

    Article  Google Scholar 

  4. F.F. Wu, S.S. Jiang, R.D. Zhao, Q. Zhou, G.A. Zhang, X.F. Wu, Mater. Sci. Eng., A 646, 272 (2015)

    Article  Google Scholar 

  5. B. Zhang, Y.G. Chen, H.B. Guo, J. Alloys Compd. 582, 496 (2014)

    Article  Google Scholar 

  6. E. Nagy, V. Rontó, J. Sólyom, A. Roósz, J. Phys: Conf. Ser. 144, 012035 (2009)

    Google Scholar 

  7. J.Y. Mo, H.S. Liu, Y. Zhang, M.Z. Wang, L. Zhang, B.Z. Liu, W.M. Yang, J. Non-Cryst, Solids 464, 1 (2017)

    Google Scholar 

  8. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, Z.D. Sha, Mater. Des. 77, 1 (2015)

    Article  Google Scholar 

  9. X. Huang, Z. Ling, Y.J. Wang, L.H. Dai, Intermetallics 75, 36 (2016)

    Article  Google Scholar 

  10. A. Inoue, W. Zhang, J. Saida, Mater. Trans. 45, 1153 (2004)

    Article  Google Scholar 

  11. C.Y. Haein, J. Korean Phys. Soc. 60, 485 (2012)

    Article  Google Scholar 

  12. E.S. Park, J.S. Kyeong, D.H. Kim, Scripta Mater. 57, 49 (2007)

    Article  Google Scholar 

  13. P. Jia, H. Guo, Y. Li, J. Xu, E. Ma, Scripta Mater. 54, 2165 (2006)

    Article  Google Scholar 

  14. G. Wang, S. Pauly, S. Gorantla, N. Mgttern, J. Eckert, J. Mater. Sci. Technol. 30, 609 (2014)

    Article  Google Scholar 

  15. W.L. Ma, Y.L. Xu, B. Shi, J.G. Li, J. Mater. Sci. Technol. 33, 99 (2017)

    Article  Google Scholar 

  16. T.M. Chung, S.R. Jian, P.J. Hsieh, Metals 6, 216 (2016)

    Article  Google Scholar 

  17. Y.P. Jiang, K. Qiu, Mater. Des. 65, 410 (2015)

    Article  Google Scholar 

  18. D.J.H. Cockayne, D.R. McKenzie, Acta Cryst. A 44, 870 (1988)

    Article  Google Scholar 

  19. G.Q. Li, K.B. Borisenko, Y. Chen, D. Nguyen-Manh, E. Ma, D.J.H. Cockayne, Acta Mater. 57, 804 (2009)

    Article  Google Scholar 

  20. X.H. Wang, A. Inoue, J.F. Zhao, F.L. Kong, S.L. Zhu, I. Kaban, M. Stoica, S. Oswald, C. Fan, E. Shalaan, F. Al-Marzouki, J. Eckert, F.X. Yin, Q. Li, J. Alloy. Compd. 739, 1104 (2018)

    Article  Google Scholar 

  21. L. Tang, T.Q. Wen, N. Wang, Y. Sun, F. Zhang, Z.J. Yang, K.M. Ho, C.Z. Wang, Phys. Rev. Mater. 2, 03360 (2018)

    Google Scholar 

  22. D. Ma, A.D. Stoica, X.L. Wang, Nat. Mater. 8, 30 (2009)

    Article  Google Scholar 

  23. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  Google Scholar 

  24. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  Google Scholar 

  25. F. Spaepen, Acta Metall. 25, 407 (1977)

    Article  Google Scholar 

  26. J.C. Lee, K.W. Park, K.H. Kim, E. Fleury, B.J. Lee, M. Wakeda, Y. Shibutani, J. Mater. Res. 22, 3087 (2007)

    Article  Google Scholar 

  27. Y.Q. Cheng, H.W. Sheng, E. Ma, Phys. Rev. B 78, 014207 (2008)

    Article  Google Scholar 

  28. P.S. Steif, F. Spaepen, J.W. Hutchinson, Acta Metall. 30, 447 (1982)

    Article  Google Scholar 

  29. T. Wada, A. Inoue, A.L. Greer, Appl. Phys. Lett. 86, 251907 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Excellent Young Scholars of China (No. 51422203), the National Natural Science Foundation of China (Nos. 51572091 and 51372001), the Natural Science Foundation of Guangdong Province, China (No. 2018A030313395), the China Postdoctoral Science Foundation (No. 2017M610522), the Science and Technology Program of Guangzhou, China (No. 201604046027), the Fundamental Research Funds for the Central Universities (No. 2017BQ035) and the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201716).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-Liang Gao or Guo-Qiang Li.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Chou, YJ., Gao, FL. et al. Atomic Structure of Cu49Hf42Al9 Metallic Glass with High Glass-Forming Ability and Plasticity. Acta Metall. Sin. (Engl. Lett.) 32, 803–807 (2019). https://doi.org/10.1007/s40195-019-00907-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00907-1

Keywords

Navigation