Skip to main content
Log in

Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Low cycle fatigue behavior of a quenched and tempered high-strength steel (Q960E) was studied in the strain amplitude ranging from ± 0.5% to ± 1.2% at room temperature. As a result of fatigue loading, the dislocation structural evolution and fracture mechanism were examined and studied by transmission electron microscopy and scanning electron microscopy (SEM). The results showed that this Q960E steel showed cyclic softening at different strain amplitudes, and the softening tendency was more apparent at strain amplitude of ± (0.6–1.2)% than that at ± 0.5%. The reduction in dislocation density with increasing strain amplitude is responsible for the softening tendency of cyclic stress with the strain amplitude. The material illustrates near-Masing behavior at strain amplitude ranging from ± 0.6% to ± 1.2%. The near-Masing behavior of Q960E high-strength steel can be the result of stability of martensite lath at different strain amplitudes. Partial transformation from martensite laths to dislocation cells is responsible for the derivation from ideal Masing behavior. In the SEM examination of fracture surfaces, transgranular cracks initiate on the sample surface. Striations can be found during the crack propagation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Branco, J.D. Costa, F.V. Antunes, Theor. Appl. Fract. Mec. 58(1), 28 (2012)

    Article  CAS  Google Scholar 

  2. S. Glodež, M. Knez, N. Jezernik, J. Kramberger, Eng. Fail. Anal. 16(7), 2348 (2009)

    Article  Google Scholar 

  3. P.C. Chakraborti, M.K. Mitra, Int. J. Fatigue 28(3), 194 (2006)

    Article  CAS  Google Scholar 

  4. P. Verma, N.C.S. Srinivas, S.R. Singh, V. Singh, Mater. Sci. Eng., A 652, 30 (2016)

    Article  CAS  Google Scholar 

  5. A. Chauhan, D. Litvinov, J. Aktaa, Int. J. Fatigue 93, Part 1,1 (2016)

  6. R.K. Dutta, M. Amirthalingam, M.J.M. Hermans, I.M. Richardson, Mater. Sci. Eng., A 559, 86 (2013)

    Article  CAS  Google Scholar 

  7. W.S. Chang, J. Mater. Sci. 37(10), 1973 (2002)

    Article  CAS  Google Scholar 

  8. B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu, Mater. Sci. Eng., A 707, 306 (2017)

    Article  CAS  Google Scholar 

  9. J.C. Zhang, H.S. Di, Y.G. Deng, S.C. Li, R.D.K. Misra, Mater. Sci. Eng., A 645, 232 (2015)

    Article  CAS  Google Scholar 

  10. M.C. Marinelli, I. Alvarez-Armas, U. Krupp, Mater. Sci. Eng., A 684, 254 (2017)

    Article  CAS  Google Scholar 

  11. J. Kang, F.C. Zhang, X.Y. Long, B. Lv, Mater. Sci. Eng., A 666, 88 (2016)

    Article  CAS  Google Scholar 

  12. Y.J. Li, D. Liu, W.N. Zhang, J. Kang, D. Chen, G. Yuan, G.D. Wang, Mater. Lett. 230, 36 (2018)

    Article  CAS  Google Scholar 

  13. F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, J. Li, Mater. Sci. Eng., A 723, 247 (2018)

    Article  CAS  Google Scholar 

  14. X.U. Zhenlin, J. Fang, Hot Working Technology 45(15), 4 (2017)

    Google Scholar 

  15. B. Fournier, M. Sauzay, A. Rarcelo, F. Barcelo, A. Pineau, J. Nucl. Mater. 71, 386–388 (2009)

    Google Scholar 

  16. H.W. Zhou, Y.Z. He, H. Zhang, Y.W. Cen, Int. J. Fatigue 47, 83 (2013)

    Article  CAS  Google Scholar 

  17. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, A. Pineau, Int. J. Fatigue 30(4), 649 (2008)

    Article  CAS  Google Scholar 

  18. S.L. Mannan, M. Valsan, Int. J. Mech. Sci. 48(2), 160 (2006)

    Article  Google Scholar 

  19. H.W. Zhou, Y.Z. He, M. Cui, Y.W. Cen, J.Q. Jiang, Int. J. Fatigue 56, 1 (2013)

    Article  Google Scholar 

  20. H.W. Zhou, Y.Z. He, Y.W. Cen, J.Q. Jiang, Adv. Mater. Res. 815, 875 (2013)

    Article  CAS  Google Scholar 

  21. F. Ellyin, Fatigue damage, crack growth and life prediction (Springer, Netherlands, 1997), pp. 278–380

    Book  Google Scholar 

  22. D. Lefebvre, F. Ellyin, Int. J. Fatigue 6(1), 9 (1984)

    Article  Google Scholar 

  23. P.P. Sarkar, P.S. De, S.K. Dhua, P.C. Chakraborti, Mater. Sci. Eng., A 707, 125 (2017)

    Article  CAS  Google Scholar 

  24. K. Guguloth, S. Sivaprasad, D. Chakrabarti, S. Tarafder, Mater. Sci. Eng., A 604, 196 (2014)

    Article  CAS  Google Scholar 

  25. S. Goyal, S. Mandal, P. Parameswaran, R. Sandhya, C.N. Athreya, K. Laha, Mater. Sci. Eng., A 696, 407 (2017)

    Article  CAS  Google Scholar 

  26. S. Sivaprasad, S.K. Paul, A. Das, N. Narasaiah, S. Tarafder, Mater. Sci. Eng., A 527(26), 6858 (2010)

    Article  Google Scholar 

  27. A. Plumtree, H.A. Abdel-Raouf, Int. J. Fatigue 23(9), 799 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports of the National Natural Science Foundation of China (No. 51674079) and Anhui Provincial Natural Science Foundation (Nos. KJ2018A0062, KJ2017A128 and KJ2017A066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Wei Zhou or Xiang-Hua Liu.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, FM., Zhou, HW., Liu, XH. et al. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue. Acta Metall. Sin. (Engl. Lett.) 32, 1346–1354 (2019). https://doi.org/10.1007/s40195-019-00893-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00893-4

Keywords

Navigation