Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1269–1280 | Cite as

Velocity and Temperature of In-Flight Particles and Its Significance in Determining the Microstructure and Mechanical Properties of TBCs

  • Lei Zhang
  • Tao He
  • Yu BaiEmail author
  • Fang-Li Yu
  • Wei Fan
  • Yu-Shan MaEmail author
  • Zhan-Dong Chang
  • Hai-Bo Liu
  • Ben-Qiang Li
Article
  • 44 Downloads

Abstract

The correlation between particle in-flight parameter, defect content and mechanical property of yttria-stabilized zirconia coating was systematically studied in the present work. The melting state of in-flight particle during spraying was simulated using computational fluid dynamics. The results suggested that, with the increase of velocity and temperature of in-flight particles in the plasma jet, the particles changed from partially melted state to fully melted one. As a result, the total defect content of as-sprayed coating gradually decreased, while elastic modulus and microhardness increased correspondingly. However, the fracture toughness of as-sprayed coating reached a maximum value when the total defect content reached approximately 9.1%.

Keywords

Yttria-stabilized zirconia Thermal barrier coating Defect content Computational fluid dynamics Mechanical property 

Notes

Acknowledgements

This work was supported by the Collaborative Innovation Center of Advanced Control Valve Project (Grant No. WZYB-XTCX-001). The authors would like to thank Mr. Zijun Ren at Instrument Analysis Center of Xi’an Jiaotong University for the assistance with SEM analysis.

References

  1. [1]
    J.C. Williams, E.A. Starke, Acta Mater. 5775, 51 (2003)Google Scholar
  2. [2]
    N.P. Padture, M. Gell, E.H. Jordan, Science 280, 296 (2002)Google Scholar
  3. [3]
    R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram. Soc. 2023, 83 (2010)Google Scholar
  4. [4]
    J. Zhang, X.Y. Guo, Y.G. Jung, L. Li, J. Knapp, Surf. Coat. Technol. 18, 323 (2017)Google Scholar
  5. [5]
    W.B. Li, L.L. Liu, Y.F. Yang, S.L. Zhu, F.H. Wang, Acta Metall. Sin. (Engl. Lett.) (2018).  https://doi.org/10.1007/s40195-018-0842-1(0123456789 Google Scholar
  6. [6]
    C.S. Che, J.L. Lu, G. Kong, Q.Y. Xu, Acta Metall. Sin. (Engl. Lett.) 138, 22 (2009)Google Scholar
  7. [7]
    S.M.A. Shibli, K.S. Chinchu, M.A. Sha, Acta Metall. Sin. (Engl. Lett.) (2018).  https://doi.org/10.1007/s40195-018-0823-4 Google Scholar
  8. [8]
    S.H. Wang, C.S. Liu, F.J. Shan, Acta Metall. Sin. (Engl. Lett.) 161, 22 (2009)Google Scholar
  9. [9]
    A. Vardelle, M. Vardelle, P. Fauchais, Plasma Chem. Plasma P. 255, 2 (1982)Google Scholar
  10. [10]
    D.Q. Zhang, L.L. Zheng, X.Y. Hu, H. Zhang, Int. J. Heat Mass Transf. 508, 98 (2016)Google Scholar
  11. [11]
    H.B. Xiong, L.L. Zheng, S. Sampath, R.L. Williamson, J.R. Fincke, Int. J. Heat Mass Transf. 5189, 47 (2004)Google Scholar
  12. [12]
    P. Wei, Z.Y. Wei, G.X. Zhao, J. Du, Y. Bai, Comput. Mater. Sci. 8, 103 (2015)Google Scholar
  13. [13]
    Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, J.F. Yang, Appl. Surf. Sci. 7210, 257 (2011)Google Scholar
  14. [14]
    P. Fauchais, J. Phys. D Appl. Phys. 86, 37 (2004)Google Scholar
  15. [15]
    T. Nakamura, G. Qian, C.C. Berndt, J. Am. Ceram. Soc. 578, 83 (2000)Google Scholar
  16. [16]
    S. Deshpande, A. Kulkarni, S. Sampath, H. Herman, Surf. Coat. Technol. 6, 187 (2004)Google Scholar
  17. [17]
    A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, S. Sampath, Mater. Sci. Eng. A. 239, 497 (2008)Google Scholar
  18. [18]
    Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, H. Herman, Acta Mater. 5319, 51 (2003)Google Scholar
  19. [19]
    T. Yang, J.P. Longtin, S. Sampath, J. Am. Ceram. Soc. 710, 92 (2009)Google Scholar
  20. [20]
    C.K. Lin, C.C. Berndt, J. Mater. Sci. 111, 30 (1995)Google Scholar
  21. [21]
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, Ceram. Int. 2295, 35 (2009)Google Scholar
  22. [22]
    H. Zhou, F. Li, B. He, Surf. Coat. Technol. 7360, 201 (2007)Google Scholar
  23. [23]
    S.W. Kweh, K.A. Khor, P. Cheang, Biomaterials 1223, 21 (2000)Google Scholar
  24. [24]
    K.A. Khor, Y.W. Gu, C.H. Quek, P. Cheang, Surf. Coat. Technol. 195, 168 (2003)Google Scholar
  25. [25]
    N.H. Faisal, R. Ahmed, A.K. Prathuru, S. Spence, M. Hossain, J.A. Steel, Eng. Fract. Mech. 189, 128 (2014)Google Scholar
  26. [26]
    R.S. Lima, A. Kucuk, C.C. Berndt, Mater. Sci. Eng. A 224, 327 (2002)Google Scholar
  27. [27]
    X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu, Appl. Surf. Sci. 3879, 254 (2008)Google Scholar
  28. [28]
    H.J. Kim, Y.G. Kweon, Thin Solid Films 201, 342 (1999)Google Scholar
  29. [29]
    Z.Y. Yu, Z.Q. Tan, G.L. Fan, R.B. Lin, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, D. Zhang, Acta Metall. Sin. (Engl. Lett.) 1121, 31 (2018)Google Scholar
  30. [30]
    J. Wang, J. Mater. Sci. 801, 19 (1984)Google Scholar
  31. [31]
    Y. Wang, Y. Bai, T. Yuan, H.Y. Chen, Y.X. Kang, W.J. Shi, X.L. Song, B.Q. Li, Surf. Coat. Technol. 95, 319 (2017)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Zhang
    • 1
  • Tao He
    • 2
  • Yu Bai
    • 1
    Email author
  • Fang-Li Yu
    • 3
  • Wei Fan
    • 1
  • Yu-Shan Ma
    • 2
    Email author
  • Zhan-Dong Chang
    • 2
  • Hai-Bo Liu
    • 2
  • Ben-Qiang Li
    • 4
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  2. 2.Wuzhong Instrument Co. LtdWu ZhongChina
  3. 3.School of Materials EngineeringXi’an Aeronautical UniversityXi’anChina
  4. 4.Department of Mechanical EngineeringUniversity of MichiganDearbornUSA

Personalised recommendations