Effect of Deep Sea Pressures on the Corrosion Behavior of X65 Steel in the Artificial Seawater

  • Qiu-Shi Li
  • Shun-Zhong Luo
  • Xu-Teng Xing
  • Jing Yuan
  • Xin Liu
  • Ji-Hui WangEmail author
  • Wen-Bin Hu


The corrosion behaviors of X65 steel in the artificial seawater at different hydrostatic pressures are investigated by potentiodynamic polarization measurements, electrochemical impedance spectroscopy measurements and weight loss measurements. The corroded morphologies and the corrosion products are also investigated by scanning electron microscopy, X-ray diffraction analysis and Raman analysis. The results show that the corrosion current increases as the hydrostatic pressure increases. The charge transfer resistance decreases as the hydrostatic pressure increases. The corrosion products are mainly composed of γ-FeOOH and Fe3O4 at the atmospheric pressure, while the main components are γ-FeOOH, Fe3O4, and γ-Fe2O3 at the high pressure. The hydrostatic pressure accelerates the corrosion of X65 steel due to its effect on the chemical and physical properties of corrosion products, including the promoted reduction of γ-FeOOH and the wider and deeper cracks on the corrosion products layer.


X65 steel Deep sea pressures Electrochemical measurements Corrosion 



This work was supported by National Basic Research Program of China (2014CB046801), National Natural Science Foundation of China (51471117), and Key Project of Tianjin Natural Science Foundation (13JCZDJC29500).


  1. [1]
    Y. Yang, T. Zhang, Y. Shao, G. Meng, F. Wang, Corros. Sci. 52, 2697 (2010)CrossRefGoogle Scholar
  2. [2]
    P. Traverso, E. Canepa, Ocean Eng. 87, 10 (2014)CrossRefGoogle Scholar
  3. [3]
    Z. Yang, B. Kan, J. Li, Y. Su, L. Qiao, A.A. Volinsky, Materials 10, 1307 (2017)CrossRefGoogle Scholar
  4. [4]
    S.H. Xing, Y. Li, J.A. Wharton, W.J. Fan, G.Y. Liu, F. Zhang, X.D. Zhao, Mater. Corros. 68, 1123 (2017)CrossRefGoogle Scholar
  5. [5]
    R.E. Melchers, Corrosion 6, 895 (2005)CrossRefGoogle Scholar
  6. [6]
    F. Reinhart, J. Jenkins, Corrosion of Materials in Surface Seawater After 12 and 18 months of Exposure (Naval Civil Engineering Laboratory, Port Hueneme, 1972)Google Scholar
  7. [7]
    R. Venkatesan, M.A. Venkatasamy, T.A. Bhaskaran, E.S. Dwarakadasa, M. Ravindran, Br. Corros. J. 37, 257 (2002)CrossRefGoogle Scholar
  8. [8]
    K. Ding, W. Guo, R. Qiu, J. Hou, L. Fan, L. Xu, J. Mater. Eng. Perform. 27, 4489 (2018)CrossRefGoogle Scholar
  9. [9]
    E. Canepa, R. Stifanese, L. Merotto, P. Traverso, Mar. Struct. 59, 271 (2018)CrossRefGoogle Scholar
  10. [10]
    A.M. Beccaria, G. Poggi, M. Arfelli, G. Maitogno, Corros. Sci. 34, 989 (1993)CrossRefGoogle Scholar
  11. [11]
    A.M. Beccaria, G. Poggi, G. Castello, Br. Corros. J. 30, 283 (1995)CrossRefGoogle Scholar
  12. [12]
    A.M. Beccaria, G. Poggi, D. Gingaud, P. Castello, Br. Corros. J. 29, 65 (1994)CrossRefGoogle Scholar
  13. [13]
    T. Zhang, Y. Yang, Y. Shao, G. Meng, F. Wang, Electrochim. Acta 54, 3915 (2009)CrossRefGoogle Scholar
  14. [14]
    C. Zhang, Z.W. Zhang, L. Liu, Electrochim. Acta 210, 401 (2016)CrossRefGoogle Scholar
  15. [15]
    Z.X. Yang, B. Kan, J.X. Li, Y.J. Su, L.J. Qiao, J. Electroanal. Chem. 822, 123 (2018)CrossRefGoogle Scholar
  16. [16]
    J. Dünnwald, A. Otto, Corros. Sci. 29, 1167 (1989)CrossRefGoogle Scholar
  17. [17]
    M.B. Leban, T. Kosec, Eng. Fail. Anal. 79, 940 (2017)CrossRefGoogle Scholar
  18. [18]
    M. Hanesch, Geophys. J. Int. 177, 941 (2009)CrossRefGoogle Scholar
  19. [19]
    O.N. Shebanov, P. Lazor, J. Raman Spectrosc. 34, 845 (2003)CrossRefGoogle Scholar
  20. [20]
    ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. (ASTM International, West Conshohocken, 2003)Google Scholar
  21. [21]
    M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, ‎Hoboken, 2008)CrossRefGoogle Scholar
  22. [22]
    M. Stratmann, K. Hoffmann, Corros. Sci. 29, 1329 (1989)CrossRefGoogle Scholar
  23. [23]
    V. Lair, H. Antony, L. Legrand, A. Chausse, Corros. Sci. 48, 2050 (2006)CrossRefGoogle Scholar
  24. [24]
    U.R. Evan, Nature 206, 980 (1965)CrossRefGoogle Scholar
  25. [25]
    H. Sun, L. Liu, Y. Li, F. Wang, J. Electrochem. Soc. 160, C89 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiu-Shi Li
    • 1
  • Shun-Zhong Luo
    • 1
  • Xu-Teng Xing
    • 1
  • Jing Yuan
    • 1
    • 2
  • Xin Liu
    • 1
  • Ji-Hui Wang
    • 1
    Email author
  • Wen-Bin Hu
    • 1
  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.College of Physics Electronic Information EngineeringQinghai University for NationalitiesXiningChina

Personalised recommendations