Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 599–606 | Cite as

Hot Corrosion Behavior of SiO2–Al2O3–Glass Composite Coating on Ti–47Al–2Cr–2Nb Alloy: Diffusion Barrier for S and Cl

  • Wen-Bo Li
  • Lan-Lan Liu
  • Ying-Fei YangEmail author
  • Sheng-Long Zhu
  • Fu-Hui Wang
Article
  • 31 Downloads

Abstract

Type I hot corrosion behavior of SiO2–Al2O3–glass composite coating based on Ti–47Al–2Cr–2Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na2SO4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al2O3 layer.

Keywords

Corrosion Composite coating Ti–47Al–2Cr–2Nb alloy Diffusion 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51201171) and the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA03A512).

References

  1. [1]
    K.W. Kim, J. Miner. Met. Mater. Soc. 46, 7 (1994)CrossRefGoogle Scholar
  2. [2]
    K.W. Kim, J. Miner. Met. Mater. Soc. 47, 7 (1995)CrossRefGoogle Scholar
  3. [3]
    F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J.D. Paul, Adv. Eng. Mater. 2, 11 (2010)Google Scholar
  4. [4]
    T. He, R. Hu, T.B. Zhang et al., Acta Metall. Sin. (Engl. Lett.) 29, 8 (2016)CrossRefGoogle Scholar
  5. [5]
    Y. Umakoshi, M. Yamaguchi, T. Sakagami, T. Yamane, J. Mater. Sci. 24(5), 1599–1603 (1989)CrossRefGoogle Scholar
  6. [6]
    K. Maki, M. Shioda, M. Sayashi, T. Shimizu, S. Isobe, Effect of silicon and niobium on oxidation resistance of TiAl intermetallics, in High Temperature Aluminides and Intermetallics, ed. by S.H. Whang, D.P. Pope, C.T. Liu (Elsevier, Amsterdam, 1992), pp. 591–596CrossRefGoogle Scholar
  7. [7]
    M. Yoshihara, Y.-W. Kim, Intermetallics 13, 5 (2005)CrossRefGoogle Scholar
  8. [8]
    Z. Tang, F. Wang, W. Wu, Surf. Coat. Technol. 99, 3 (1998)Google Scholar
  9. [9]
    Z. Tang, F. Wang, W. Wu, Intermetallics 7, 11 (1999)CrossRefGoogle Scholar
  10. [10]
    M.-P. Bacos, M. Thomas, J.-L. Raviart, A. Morel, S. Mercier, P. Josso, Intermetallics 19, 8 (2011)CrossRefGoogle Scholar
  11. [11]
    Z. Tang, F. Wang, W. Wu, Oxid. Met. 51, 3–4 (1999)CrossRefGoogle Scholar
  12. [12]
    Y. Xiong, S. Zhu, F. Wang, Surf. Coat. Technol. 190, 2 (2005)CrossRefGoogle Scholar
  13. [13]
    Y. Xiong, S. Zhu, F. Wang, Corros. Sci. 50, 1 (2008)CrossRefGoogle Scholar
  14. [14]
    S. Sarkar, S. Datta, S. Das, D. Basu, Surf. Coat. Technol. 204, 3 (2009)CrossRefGoogle Scholar
  15. [15]
    S. Sarkar, S. Datta, S. Das, D. Basu, Surf. Coat. Technol. 203, 13 (2009)Google Scholar
  16. [16]
    S. Das, S. Datta, D. Basu, G. Das, Ceram. Int. 35, 4 (2009)Google Scholar
  17. [17]
    T. Moskalewicz, F. Smeacetto, A. Czyrska-Filemonowicz, Surf. Coat. Technol. 203, 16 (2009)CrossRefGoogle Scholar
  18. [18]
    S. Das, S. Datta, D. Basu, G. Das, Ceram. Int. 35, 4 (2009)Google Scholar
  19. [19]
    T. Moskalewicz, F. Smeacetto, G. Cempura, L. Ajitdoss, M. Salvo, A. Czyrska-Filemonowicz, Surf. Coat. Technol. 204, 21 (2010)CrossRefGoogle Scholar
  20. [20]
    Z. Tang, F. Wang, W. Wu, Mater. Sci. Eng. A 276, 1 (2000)CrossRefGoogle Scholar
  21. [21]
    J. Pask, A. Tomsia, J. Dent, Res. 67, 9 (1988)Google Scholar
  22. [22]
    H. Yang, J. Qiao, S. Wang et al., Acta Metall. Sin. (Engl. Lett.) 27, 4 (2014)Google Scholar
  23. [23]
    Y.Y. Xi, J. He, X.J. Sun et al., Acta Metall. Sin. (Engl. Lett.) 31, 11 (2018)CrossRefGoogle Scholar
  24. [24]
    A.P. Tomsia, J.A. Pask, Dent. Mater. 2, 1 (1986)CrossRefGoogle Scholar
  25. [25]
    M. Brochu, B. Gauntt, R. Shah, G. Miyake, R. Loehman, J. Eur, Ceram. Soc. 26, 15 (2006)Google Scholar
  26. [26]
    D. Böschel, H. Roggendorf, J. Sol–Gel. Sci. Technol. 25, 3 (2002)CrossRefGoogle Scholar
  27. [27]
    W. Li, M. Chen, C. Wang, S. Zhu, F. Wang, Surf. Coat. Technol. 218, 1 (2013)CrossRefGoogle Scholar
  28. [28]
    V. Shemet, H. Hoven, W.J. Quadakkers, Intermetallics 5, 4 (1997)Google Scholar
  29. [29]
    E.H. Copland, B. Gleeson, D.J. Young, Acta Mater. 48, 11 (1999)Google Scholar
  30. [30]
    C.N. Fenner, Am. J. Sci. 36, 24 (1913)Google Scholar
  31. [31]
    V. Tyagi, A.K. Varshneya, J. Non-Cryst. Solids 238(3), 186–192 (1998)CrossRefGoogle Scholar
  32. [32]
    A.K. Varshneya, J. Non-Cryst. Solids 356, 44 (2010)CrossRefGoogle Scholar
  33. [33]
    W. Li, M. Chen, M. Wu, S. Zhu, C. Wang, F. Wang, Corros. Sci. 87, 5 (2014)Google Scholar
  34. [34]
    F. Lange, J. Am, Ceram. Soc. 54, 12 (1971)CrossRefGoogle Scholar
  35. [35]
    D.Y. Lee, D.J. Kim, B.Y. Kim, Y.S. Song, Mater. Sci. Eng. A 341, 1 (2003)CrossRefGoogle Scholar
  36. [36]
    G.H. Frischat, M. Szurman, T. Pfeiffer, Int. J Appl. Glass Sci. 2, 1 (2011)CrossRefGoogle Scholar
  37. [37]
    L. Backnaes, J. Deubener, H. Behrens, J. Stelling, S.B. Cichy, A. Bartels, J. Non-Cryst. Solids 357, 15 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Bo Li
    • 1
  • Lan-Lan Liu
    • 1
  • Ying-Fei Yang
    • 2
    Email author
  • Sheng-Long Zhu
    • 3
  • Fu-Hui Wang
    • 3
  1. 1.Hunan Electric Power Co., Ltd.ChangshaChina
  2. 2.Institute of Advanced Wear and Corrosion Resistant and Functional MaterialJinan UniversityGuangzhouChina
  3. 3.Laboratory of Corrosion and Protection, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations