Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 651–658 | Cite as

Effect of Aging Heat Treatment on the Microstructure and Creep Properties of the Cast Ni-Based Superalloy at Low Temperature

  • Xiang-Wei Li
  • Li Wang
  • Xin-Gang Liu
  • Yao Wang
  • Jia-Sheng DongEmail author
  • Lang-Hong Lou
Article
  • 74 Downloads

Abstract

Effect of aging heat treatment on the grain boundary microstructure and creep properties of a cast Ni-based superalloy was investigated. With increasing aging temperature from 750 to 1000 °C, M23C6 carbides along the grain boundaries evolve from fine distributed block, continuous film into the coarse discrete block. Moreover, the M23C6 carbides are mainly enveloped within γ′ layers along grain boundaries during 1000 °C aging. Creep rupture lifetime and elongation at 760 °C and 645 MPa are improved with increasing the aging temperature. In particular, the creep rupture lifetime of the specimens aging at 1000 °C is one order of magnitude higher than that of the specimens aging at 750 °C. The enhancement of ductility induced by the γ′ envelopes plays a significant role in the improvement of creep rupture lifetime.

Keywords

Superalloys Creep Grain boundary Carbides Aging heat treatment 

Notes

Acknowledgements

The work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0701403) and the National Natural Science Foundation of China (Nos. 51701220, 51631008, 51671196 and 51871210).

References

  1. [1]
    M.V. Nathal, Metall. Trans. A 18, 1961 (1987)CrossRefGoogle Scholar
  2. [2]
    T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater. 52, 3737 (2004)CrossRefGoogle Scholar
  3. [3]
    J.S. Van Sluytman, T.M. Pollock, Acta Mater. 60, 1771 (2012)CrossRefGoogle Scholar
  4. [4]
    Q.Z. Chen, C.N. Jones, D.M. Knowles, Mater. Sci. Eng. A 385, 402 (2004)CrossRefGoogle Scholar
  5. [5]
    X.M. Dong, X.L. Zhang, K. Du, Y.Z. Zhou, T. Jin, H.Q. Ye, J. Mater. Sci. Technol. 28, 1031 (2012)CrossRefGoogle Scholar
  6. [6]
    P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, R.C. Reed, Acta Mater. 103, 688 (2016)CrossRefGoogle Scholar
  7. [7]
    M.Q. Ou, Y.C. Ma, X.C. Hao, B.F. Wan, T. Liang, K. Liu, J. Mater. Sci. Technol. 33, 1300 (2017)CrossRefGoogle Scholar
  8. [8]
    R. Castillo, in Superalloys, ed. by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (TMS, Warrendale, 1988), p. 850Google Scholar
  9. [9]
    X.J. Wu, A.K. Koul, Metall. Mater. Trans. A 26, 905 (1995)CrossRefGoogle Scholar
  10. [10]
    M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, 2nd edn. (ASM International Press, Novelty, 2002)Google Scholar
  11. [11]
    T.G. Langdon, J. Mater. Sci. 41, 597 (2006)CrossRefGoogle Scholar
  12. [12]
    J.L.W. Carter, M.W. Kuper, M.D. Uchic, M.J. Mills, Mater. Sci. Eng. A 605, 127 (2014)CrossRefGoogle Scholar
  13. [13]
    K.X. Dong, C. Yuan, S. Gao, C.L. Jia, J.T. Guo, C.C. Ge, J. Mater. Res. 32, 624 (2017)CrossRefGoogle Scholar
  14. [14]
    M.V. Nathal, R.D. Maier, L.J. Ebert, Metall. Trans. A 13, 1767 (1982)CrossRefGoogle Scholar
  15. [15]
    J.A. Carey, P.M. Sargent, D.R.H. Jones, J. Mater. Sci. 9, 572 (1990)Google Scholar
  16. [16]
    A. Baldan, J. Mater. Sci. 26, 3409 (1991)CrossRefGoogle Scholar
  17. [17]
    B.N. Du, J.X. Yang, C.Y. Cui, X.F. Sun, Mater. Sci. Eng. A 623, 59 (2015)CrossRefGoogle Scholar
  18. [18]
    H.R. Zhang, O.A. Ojo, M.C. Chaturvedi, Scr. Mater. 58, 167 (2008)CrossRefGoogle Scholar
  19. [19]
    B.N. Du, Z.W. Shi, J.X. Yang, Z.K. Chu, C.Y. Cui, X.F. Sun, L.Y. Sheng, Y.F. Zheng, J. Mater. Sci. Technol. 32, 265 (2016)CrossRefGoogle Scholar
  20. [20]
    P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, R.C. Reed, Acta Mater. 125, 156 (2017)CrossRefGoogle Scholar
  21. [21]
    B.N. Du, Z.Y. Hu, L.Y. Sheng, C.Y. Cui, J.X. Yang, Y.F. Zheng, X.F. Sun, J. Mater. Sci. Technol. 34, 1805 (2018)CrossRefGoogle Scholar
  22. [22]
    L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, K. Liu, J. Mater. Sci. Technol. 34, 541 (2018)CrossRefGoogle Scholar
  23. [23]
    H. Zhang, Y.C. Wang, F. Liu, S.H. Ai, Q.S. Zang, Z.G. Wang, J. Mater. Sci. Technol. 18, 176 (2002)Google Scholar
  24. [24]
    X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, H.Q. Ye, Metall. Mater. Trans. A 38, 3014 (2007)CrossRefGoogle Scholar
  25. [25]
    X.W. Jiang, D. Wang, G. Xie, H. Li, L.H. Lou, J. Zhang, Metall. Mater. Trans. A 45, 6016 (2014)CrossRefGoogle Scholar
  26. [26]
    B.C. Yan, J. Zhang, L.H. Lou, Mater. Sci. Eng. A 474, 39 (2008)CrossRefGoogle Scholar
  27. [27]
    P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, R.C. Reed, Acta Mater. 124, 489 (2017)CrossRefGoogle Scholar
  28. [28]
    S. Gao, J.S. Hou, K.X. Dong, L.Z. Zhou, Acta Metall. Sin. (Engl. Lett.) 30, 261 (2017)CrossRefGoogle Scholar
  29. [29]
    J.C. Stinville, K. Gallup, T.M. Pollock, Metall. Mater. Trans. A 46, 2516 (2015)CrossRefGoogle Scholar
  30. [30]
    S.H. Zhang, D. Wang, J. Zhang, L.H. Lou, J. Mater. Sci. Technol. 28, 229 (2012)CrossRefGoogle Scholar
  31. [31]
    E. Alabort, D. Barba, S. Sulzer, M. Lissner, N. Petrinic, R.C. Reed, Acta Mater. 151, 377 (2018)CrossRefGoogle Scholar
  32. [32]
    B.F. Dyson, T.B. Gibbons, Acta Metall. Mater. 35, 2355 (1987)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiang-Wei Li
    • 1
    • 2
  • Li Wang
    • 1
  • Xin-Gang Liu
    • 1
  • Yao Wang
    • 1
  • Jia-Sheng Dong
    • 1
    Email author
  • Lang-Hong Lou
    • 1
  1. 1.Superalloys Division, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations