Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering

Abstract

The microstructure and mechanical properties of NiCrMoV- and NiCrSi-alloyed medium-carbon steels were investigated after multiple tempering. After austenitising, the steels were hardened by oil quenching and subsequently double or triple tempered at temperatures from 250 to 500 °C. The samples were characterised using scanning electron microscopy and X-ray diffraction, while the mechanical properties were evaluated by Vickers hardness testing, V-notched Charpy impact testing and tensile testing. The results showed that the retained austenite was stable up to 400 °C and the applied multiple tempering below this temperature did not lead to a complete decomposition of retained austenite in both steels. It was also found that the microstructure, hardness and impact toughness varied mainly as a function of tempering temperature, regardless of the number of tempering stages. Moreover, the impact toughness of NiCrMoV steel was rather similar after single/triple tempering at different temperatures, while NiCrSi steel exhibited tempered martensite embrittlement after single/double tempering at 400 °C. The observed difference was mainly attributed to the effect of precipitation behaviour due to the effect of alloying additions in the studied steels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    E. Abbasi, Q. Luo, D. Owens, Wear 398–399, 29 (2018)

    Article  Google Scholar 

  2. [2]

    Y. Wang, T. Lei, J. Liu, Wear 231, 12 (1999)

    Article  Google Scholar 

  3. [3]

    Y. Tomita, Int. Mater. Rev. 45, 23 (2000)

    Article  Google Scholar 

  4. [4]

    M. Assefpour-Dezfuly, A. Brownrigg, Metall. Trans. A 20, 1951 (1989)

    Article  Google Scholar 

  5. [5]

    G. Krauss, Steel Res. Int. 77, 1 (2017)

    Google Scholar 

  6. [6]

    W.J. Nam, C.S. Lee, D.Y. Ban, Mater. Sci. Eng. A 289, 8 (2000)

    Article  Google Scholar 

  7. [7]

    G.R. Speich, W.C. Leslie, Metall. Trans. 3, 1043 (1972)

    Article  Google Scholar 

  8. [8]

    M. Jung, S.J. Lee, Y.K. Lee, Metall. Mater. Trans. A 40, 551 (2009)

    Article  Google Scholar 

  9. [9]

    F. Nazemi, J. Hamel-Akré, P. Bocher, J. Mater. Sci. 53, 6198 (2018)

    Article  Google Scholar 

  10. [10]

    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, London, 2009)

    Google Scholar 

  11. [11]

    L.C.F. Canale, R.A. Mesquita, G.E. Totten, Failure Analysis of Heat Treated Steel Components (ASM International, Ohio, 2008)

    Google Scholar 

  12. [12]

    W.M. Garrison, U.S. Patent 2016/0237535 A1 (2016)

  13. [13]

    H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016)

    Article  Google Scholar 

  14. [14]

    A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, G. Krauss, Acta Mater. 77, 17 (2014)

    Article  Google Scholar 

  15. [15]

    A.K. Sinha, B.P. Division, Defects and Distortion in Heat Treated Parts (ASM International, Russell, 1991)

    Google Scholar 

  16. [16]

    X. Luo, G.E. Totten, J. ASTM Int. 8, 1 (2011)

    Google Scholar 

  17. [17]

    MCh. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45, 1247 (2014)

    Article  Google Scholar 

  18. [18]

    D. Barbier, Adv. Eng. Mater. 14, 122 (2016)

    Google Scholar 

  19. [19]

    E. Abbasi, Wear Behaviour of CBS, HISI and W1.2746 Steels (Sheffield Hallam University, Sheffield, 2017)

  20. [20]

    E. Abbasi, Q. Luo, D. Owens, Mater. Sci. Eng. A 725, 65 (2018)

    Article  Google Scholar 

  21. [21]

    C.L. Briant, Mater. Sci. Technol. 5, 138 (1989)

    Article  Google Scholar 

  22. [22]

    W.S. Lee, T.T. Su, J. Mater. Process. Technol. 87, 198 (1999)

    Article  Google Scholar 

  23. [23]

    E. Abbasi, W.M. Rainforth, Mater. Sci. Eng. A 651, 822 (2016)

    Article  Google Scholar 

  24. [24]

    B. Kim, E. Boucard, T. Sourmail, D.S. Martín, N. Gey, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 68, 169 (2014)

    Article  Google Scholar 

  25. [25]

    Ph Lemble, A. Pineau, J.L. Castagne, Ph Dumoulin, Met. Sci. 13, 496 (1979)

    Article  Google Scholar 

  26. [26]

    R.M. Horn, R.O. Ritchie, Metall. Trans. A 9, 1039 (1978)

    Article  Google Scholar 

  27. [27]

    P. Verma, G.S. Rao, N.C.S. Srinivas, V. Singh, Mater. Sci. Eng. A 683, 172 (2017)

    Article  Google Scholar 

  28. [28]

    L.Å. Norström, Met. Sci. 10, 429 (1976)

    Article  Google Scholar 

  29. [29]

    J. Liu, H. Yu, J. Wang, T. Zhou, C. Song, Steel Res. Int. 86, 1082 (2015)

    Article  Google Scholar 

  30. [30]

    W.J. Nam, C.S. Lee, Mater. Sci. Technol. 14, 827 (1998)

    Article  Google Scholar 

  31. [31]

    S. Sackl, M. Zuber, H. Clemens, S. Primig, Metall. Mater. Trans. A 47, 3694 (2016)

    Article  Google Scholar 

  32. [32]

    Y. Xiao, W. Li, H.S. Zhao, X.W. Lu, X.J. Jin, Mater. Charact. 117, 84 (2016)

    Article  Google Scholar 

  33. [33]

    A. Zhang, G. Wang, S. Jia, U.S. Patent 2014/0124102 A1 (2014)

  34. [34]

    T. Sakuma, N. Watanabe, T. Nishizawa, Trans. Jpn. 21, 159 (1980)

    Google Scholar 

  35. [35]

    Y. Tomita, T. Okawa, Mater. Sci. Eng. A 172, 145 (1993)

    Article  Google Scholar 

  36. [36]

    J. Krawczyk, P. Bala, J. Pacyna, J. Microsc. 237, 411 (2010)

    Article  Google Scholar 

  37. [37]

    Y. Tomita, K. Okabayashi, Metall. Trans. A 14, 2387 (1983)

    Article  Google Scholar 

  38. [38]

    M. Niikura, J.W. Morris, Metall. Trans. A 11, 1531 (1980)

    Article  Google Scholar 

  39. [39]

    E. Abbasi, W.M. Rainforth, Mater. Sci. Technol. 32, 1721 (2016)

    Article  Google Scholar 

  40. [40]

    J.G. Speer, E.D. Moor, K.O. Findley, D.K. Matlock, B.C.D. Cooman, D.V. Edmonds, Metall. Mater. Trans. A 42, 3591 (2011)

    Article  Google Scholar 

  41. [41]

    H. Bhadeshia, D.V. Edmonds, Met. Sci. 13, 325 (1979)

    Google Scholar 

  42. [42]

    R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, X. Jin, Metall. Mater. Trans. A 45, 1892 (2014)

    Article  Google Scholar 

  43. [43]

    D. Delagnes, F. Pettinari-Sturmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier, Acta Mater. 60, 5877 (2012)

    Article  Google Scholar 

  44. [44]

    Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R. Misra, G.D. Wang, Mater. Sci. Eng. A 675, 153 (2016)

    Article  Google Scholar 

  45. [45]

    P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55, 4877 (2007)

    Article  Google Scholar 

  46. [46]

    W.R. Clough, R.M. Vennett, R.J. Hrubec, J. Basic Eng. 90, 21 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the sponsorship provided by Innovate UK through the Knowledge Transfer Partnership Programme (KTP010269 Sheffield Hallam University and Tyzack Machine Knives Ltd.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erfan Abbasi.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi, E., Luo, Q. & Owens, D. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering. Acta Metall. Sin. (Engl. Lett.) 32, 74–88 (2019). https://doi.org/10.1007/s40195-018-0805-6

Download citation

Keywords

  • Medium-carbon steels
  • Multiple tempering
  • Alloying addition
  • Mechanical properties
  • Retained austenite
  • Precipitation behaviour