Advertisement

Modification of Corrosion Resistance of the Plain Carbon Steels by Pulsed Electric Current

  • Jun-Yang Gao
  • Xue-Bing Liu
  • Hai-Fei Zhou
  • Xin-Fang Zhang
Article
  • 27 Downloads

Abstract

The fracture of pipelines caused by corrosion cracks and the resulting oil and gas leakage can lead to great environmental pollution and economic losses. These negative effects are due to serious corrosion of the plain carbon steels used for armor of flexible pipe in oil and gas transmission medium. However, corrosion resistance of carbon steel armors has yet to be improved. In this study, the relationship between corrosion resistance and pearlite fraction in the plain carbon steels has been investigated through the application of pulsed electric current. Based on immersion test and electrochemical measurement, pulsed electric current increases the corrosion resistance of the plain carbon steels by reducing the fraction of pearlite phase. Pitting corrosion, which tends to initiate by galvanic corrosion of ferrite and cementite, is therefore inhibited due to the decrease in pearlite fraction (mixture of ferrite and cementite) under electropulsing.

Keywords

Corrosion resistance Pearlite Pulsed electric current Plain carbon steel 

Notes

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 51601011), the Fundamental Research Funds for the Central Universities, the Recruitment Program of Global Experts, the State Grid Scientific and Technological Research Program of China (No. 5211DS17001X) and the Zhejiang Electric Power Corporation Scientific and Technological Research Program of China (No. 5211DS5002 M).

References

  1. [1]
    E.M. Taleff, J.J. Lewandowski, B. Pourladian, JOM 54, 25 (2002)CrossRefGoogle Scholar
  2. [2]
    G.Z. Xiao, H.S. Di, J. Iron. Steel Res. Int. 16, 49 (2009)CrossRefGoogle Scholar
  3. [3]
    V. Rault, V. Vignal, H. Krawiec, O. Tadjoa, Corros. Sci. 86, 275 (2014)CrossRefGoogle Scholar
  4. [4]
    C.A.D. Rovere, J.H. Alano, J. Otubo, S.E. Kuri, J. Alloys Compd. 509, 5376 (2011)CrossRefGoogle Scholar
  5. [5]
    C.A.D. Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Mater. Chem. Phys. 133, 668 (2012)CrossRefGoogle Scholar
  6. [6]
    H. Conrad, Mater. Sci. Eng., A 287, 227 (2000)CrossRefGoogle Scholar
  7. [7]
    J.X. Zou, K.M. Zhang, S.Z. Hao, C. Dong, T. Grosdidier, Thin Solid Films 519, 1404 (2010)CrossRefGoogle Scholar
  8. [8]
    Y. Liu, L. Wang, W.T. Li, W.F.Q. Wang, J. Chin. Soc. Corros. Prot. 30, 129 (2010)Google Scholar
  9. [9]
    D.B. Jia, W.B. Dai, G.P. Tang, C.Z. Xu, X.Z. Tian, J.K. Yu, Mater. Sci. Technol. 33, 1417 (2017)CrossRefGoogle Scholar
  10. [10]
    S. Xiao, E. Han, J. Guo, Chin. J. Mater. Res. 20, 1 (2006)Google Scholar
  11. [11]
    Y. Zhou, W. Zhang, B. Wang, G. He, J. Guo, J. Mater. Res. 17, 2105 (2002)CrossRefGoogle Scholar
  12. [12]
    R.S. Qin, E.I. Samuel, A. Bhowmik, J. Mater. Sci. 46, 2838 (2011)CrossRefGoogle Scholar
  13. [13]
    P.P. Sarkar, P. Kumar, M.K. Manna, P.C. Chakraborti, Mater. Lett. 59, 2488 (2005)CrossRefGoogle Scholar
  14. [14]
    M. Umemoto, Z.G. Liu, H. Takaoka, M. Sawakami, K. Tsuchiya, K. Masuyama, Metall. Mater. Trans. A 32, 2127 (2001)CrossRefGoogle Scholar
  15. [15]
    R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, B. Elliott-Bowman, Mater. Sci. Technol. 30, 1040 (2014)CrossRefGoogle Scholar
  16. [16]
    R.S. Qin, A. Bhowmik, Mater. Sci. Technol. 31, 1560 (2014)CrossRefGoogle Scholar
  17. [17]
    C.J. Smithells, Metals Reference Book, 5th edn. (Butterworth and Co., London, 1976)Google Scholar
  18. [18]
    X.H. Hao, J.H. Dong, I.I.N. Etim, J. Wei, W. Ke, Corros. Sci. 110, 296 (2016)CrossRefGoogle Scholar
  19. [19]
    M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano, N. Hara, J. Electrochem. Soc. 164, C261 (2017)CrossRefGoogle Scholar
  20. [20]
    J.C. de Lacerda, L.C. Cândido, L.B. Godefroid, Mater. Sci. Eng., A 648, 428 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jun-Yang Gao
    • 1
  • Xue-Bing Liu
    • 1
  • Hai-Fei Zhou
    • 2
  • Xin-Fang Zhang
    • 1
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Zhejiang Electric Power Corporation Research InstituteHangzhouChina

Personalised recommendations