Skip to main content
Log in

A Three-Dimensional Multi-scale Plasticity Model for Metal-Intermetallic Laminate Composites Containing Phases of the L12 Structure

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containing phases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics and dislocation kinetics was used. This model takes account of the different mechanisms of self-locking superdislocations, the dislocations and the dislocation walls’ density storage for each type of layer at the micro-scale. At the meso-scale, the solutions to the dislocation kinetics equations, in the form of stress–strain curves, were used to create the properties of a three-dimensional representative element. The numerical simulation study of the macroscopic deformation was carried out with the finite element method using the dynamic model of continuum mechanics, which included the classical conservation laws, constitutive equations and the equation of state. It was shown that the simulation results generated using this model were in good agreement with the mechanical tests conducted on the single crystals of the L12 structure. The model provides an excellent description of the high-temperature plastic strain superlocalization effect of single crystal intermetallics of the L12 structure. This paper describes the numerical results of the study of the tension and compression tests of metal-intermetallic laminate composites containing phases of the L12 structure. The model allows the description of the distribution of the accumulated plastic strain inhomogeneities and is capable of predicting the strengthening properties and plastic behaviour of the metal-intermetallic laminate composites containing phases of the L12 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, W.H. Hunt, J. Int. Mater. Rev. 41, 169 (1996)

    Article  CAS  Google Scholar 

  2. X. Ma, Q. Zhang, X. Chen, G. Wu, Acta Metall. Sin. (Engl. Lett.) 27, 918 (2014)

    Article  CAS  Google Scholar 

  3. Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, X. Huang, Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling. in IOP Conference Series: Materials Science and Engineering. vol. 89 (2015)

    Article  Google Scholar 

  4. L. Qin, J. Wang, Q. Wu, X. Guo, J. Tao, J. Alloys Compd. 712, 69 (2017)

    Article  CAS  Google Scholar 

  5. D.E. Alman, C.P. Dogan, J.A. Hawk, J.C. Rawers, Mater. Sci. Eng. A 192, 624 (1995)

    Article  Google Scholar 

  6. Y. Zhang, X. Cheng, H. Cai, Mater. Des. 92, 486 (2016)

    Article  CAS  Google Scholar 

  7. Y. Zhang, X. Cheng, H. Cai, H. Zhang, J. Alloys Compd. 699, 695 (2017)

    Article  CAS  Google Scholar 

  8. A. Patselov, B. Greenberg, S. Gladkovskii, R. Lavrikov, E. Borodin, AASRI Proced. 3, 107 (2012)

    Article  Google Scholar 

  9. Y. Guo, Z. Shi, Y. Xu, G. Qiao, J. Wang, Rare Metal Mater. Eng. 43, 813 (2014)

    Article  CAS  Google Scholar 

  10. D. Ivančević, I. Smojver, Compos. Struct. 145, 248 (2016)

    Article  Google Scholar 

  11. D. Ivančević, I. Smojver, Compos. Struct. 145, 259 (2016)

    Article  Google Scholar 

  12. N. Zobeiry, A. Forghani, C. McGregor, S. McClennan, R. Vaziri, A. Poursartip, Compos. Struct. 173, 188 (2017)

    Article  Google Scholar 

  13. T. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F. Jiang, A. Rohatgi, R.B. Schwarz, M.A. Meyers, Mater. Sci. Eng. A 374, 10 (2004)

    Article  Google Scholar 

  14. Y. Cao, C. Guo, S. Zhu, N. Wei, R.A. Javed, F. Jiang, Mater. Sci. Eng. A 637, 235 (2015)

    Article  CAS  Google Scholar 

  15. V.A. Starenchenko, E.V. Kozlov, Y.V. Solov’eva, Y.A. Abzaev, N.A. Koneva, Mater. Sci. Eng. A 483–484, 602 (2008)

    Article  Google Scholar 

  16. N.A. Koneva, Y.V. Solov’eva, V.A. Starenchenko, E.V. Kozlov, Mater. Res. Soc. Symp. P 842, S5.25.1–S5.25.6 (2004)

    Article  Google Scholar 

  17. V.A. Starenchenko, Y.V. Solov’eva, S.V. Starenchenko, Bull. Rus. Acad. Sci. Phys. 77, 1091 (2013)

    Article  CAS  Google Scholar 

  18. Y.V. Solov’eva, E.L. Nikonenko, S.V. Starenchenko, V.A. Starenchenko, Bull. Rus. Acad. Sci. Phys. 75, 673 (2011)

    Article  Google Scholar 

  19. V.A. Starenchenko, Y.V. Solov’eva, Y.A. Abzaev, Phys. Solid State 41, 407 (1999)

    Article  CAS  Google Scholar 

  20. V.A. Starenchenko, D.N. Cherepanov, Y.V. Solov’eva, L.E. Popov, Rus. Phys. J. 52, 398 (2009)

    Article  CAS  Google Scholar 

  21. V.A. Starenchenko, D.N. Cherepanov, O.V. Selivanikova, Rus. Phys. J. 57, 139 (2014)

    Article  CAS  Google Scholar 

  22. V.A. Starenchenko, Y.V. Solov’eva, Y.D. Fakhrutdinova, L.A. Valuiskaya, Rus. Phys. J. 54, 885 (2012)

    Article  CAS  Google Scholar 

  23. V.A. Starenchenko, L.A. Valuiskaya, Y.D. Fakhrutdinova, Y.V. Solovjeva, N.N. Belov, Rus. Phys. J. 55, 211 (2012)

    Article  CAS  Google Scholar 

  24. Y.V. Solov’eva, Y.D. Fakhrutdinova, V.A. Starenchenko, Phys. Met. Metalogr. 116, 10 (2015)

    Article  Google Scholar 

  25. N.N. Belov, D.G. Kopanitsa, N.T. Yugov, Mathematical Simulation of Dynamic Strength of Constructional Materials (STT, Tomsk, 2010)

    Google Scholar 

  26. N.T. Yugov, N.N. Belov, A.A. Yugov, Calculation of adiabatic nonstationary flows in the three-dimensional formulation (RANET-3), Russian Federation Patent No. 2010611042, (2010)

Download references

Acknowledgement

The work was financially supported by the Russian Science Foundation (No. 17-72-10042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana D. Lipatnikova.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatnikova, Y.D., Starenchenko, V.A., Solov’eva, Y.V. et al. A Three-Dimensional Multi-scale Plasticity Model for Metal-Intermetallic Laminate Composites Containing Phases of the L12 Structure. Acta Metall. Sin. (Engl. Lett.) 31, 1265–1271 (2018). https://doi.org/10.1007/s40195-018-0737-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0737-1

Keywords

Navigation