Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing

  • Dong-Wei Ao
  • Xing-Rong Chu
  • Shu-Xia Lin
  • Yang Yang
  • Jun Gao


The effect of electropulsing on the mechanical behaviors and microstructures of Ti-6Al-4V titanium alloy was investigated by an uniaxial tensile test. Compared to the value measured in cold tensile test, the alloy exhibits lower ultimate tensile strength when the tensile deformation is assisted by electropulsing. The tensile elongation is found to vary non-monotonically with increasing root mean square (RMS) current density. Though decreasing at first, the tensile elongation increases with current density once the value exceeds 8.1 A/mm2. Through applying current with RMS current density of 12.7 A/mm2, the tensile elongation at strain rate 0.001 s−1 can be improved by 94.1%. In addition, it is observed that more remarkable electroplastic effect is induced by the higher peak current density under similar thermal effect. Microstructure analysis reveals that the low plasticity at 8.1 A/mm2 is attributed to the micro-void easily formation near the tips of acicular β phases. The enhanced ductility at higher current densities, on the other hand, is attributed to the dynamic recrystallization.


Ti-6Al-4V alloy Electropulsing Mechanical properties Microstructure Fracture morphology 



This work is supported by the Natural Science Foundation of Shandong Province (No. ZR2016EEM25).


  1. [1]
    F.H. Li, X.H. Yi, J.L. Zhang, Z.G. Fan, D.T. Gong, Z.P. Xi, Acta Metall. Sin. (Engl. Lett.) 23, 293 (2010)Google Scholar
  2. [2]
    G.L. Ma, Y.H. Lu, C. Zhu, Acta Metall. Sin. (Engl. Lett.) 13, 665 (2000)Google Scholar
  3. [3]
    S.D. Ji, A.L. Zhou, Y.M. Yue, G.H. Luan, Y.Y. Jin, F. Li, Acta Metall. Sin. (Engl. Lett.) 25, 365 (2012)Google Scholar
  4. [4]
    P. Guo, Y. Zhao, W. Zeng, Q. Hong, Mater. Sci. Eng., A 563, 106 (2013)CrossRefGoogle Scholar
  5. [5]
    M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, H.N. Han, Scripta Mater. 75, 58 (2014)CrossRefGoogle Scholar
  6. [6]
    J.H. Roh, J.J. Seo, S.T. Hong, M.J. Kim, H.N. Han, J.T. Rorh, Int. J. Plast. 58, 84 (2014)CrossRefGoogle Scholar
  7. [7]
    X. Ye, X. Li, G. Song, G. Tang, J. Alloys Compd. 616, 173 (2014)CrossRefGoogle Scholar
  8. [8]
    Y. Zhou, G.Q. Chen, X.S. Fu, W.L. Zhou, Trans. Nonferrous Metals Soc. China 24, 1012 (2014)CrossRefGoogle Scholar
  9. [9]
    X. Li, B. Ji, Q. Zhou, J. Chen, P. Gao, J. Mater. Eng. Perform. 25, 4514 (2016)CrossRefGoogle Scholar
  10. [10]
    H. Song, Z.J. Wang, T.J. Gao, Trans. Nonferrous Metals Soc. China 17, 87 (2007)CrossRefGoogle Scholar
  11. [11]
    K. Okazaki, M. Kagawa, H. Conrad, Scripta Mater. 12, 1063 (1978)CrossRefGoogle Scholar
  12. [12]
    K. Okazaki, M. Kagawa, H. Conrad, Scripta Mater. 13, 473 (1979)CrossRefGoogle Scholar
  13. [13]
    O.A. Troitskii, V.I. Likhtman, Soviet Phys. Doklady 8, 332 (1963)Google Scholar
  14. [14]
    O.A. Troitskii, Strength Mater. 9, 35 (1977)CrossRefGoogle Scholar
  15. [15]
    O.A. Troitskii, Strength Mater. 16, 277 (1984)CrossRefGoogle Scholar
  16. [16]
    H. Conrad, Mater. Sci. Eng., A 287, 227 (2000)CrossRefGoogle Scholar
  17. [17]
    K. Okazaki, K. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)CrossRefGoogle Scholar
  18. [18]
    L. Guan, G. Tang, P.K. Chu, J. Mater. Res. 25, 1215 (2011)CrossRefGoogle Scholar
  19. [19]
    X. Ye, G. Tang, G. Song, J. Kuang, J. Mater. Res. 29, 1500 (2014)CrossRefGoogle Scholar
  20. [20]
    X. Ye, Z.T.H. Tse, G. Tang, J. Mater. Res. 30, 206 (2014)CrossRefGoogle Scholar
  21. [21]
    H. Xie, X. Dong, K. Liu, Z. Ai, F. Peng, Q. Wang, F. Chen, J. Wang, Mater. Sci. Eng., A 637, 23 (2015)CrossRefGoogle Scholar
  22. [22]
    B. Kinsey, G. Cullen, A. Jordan, S. Mates, CIRP Ann. Manuf. Technol. 62, 279 (2013)CrossRefGoogle Scholar
  23. [23]
    J. Magargee, F. Morestin, J. Cao, J. Eng. Mater. Technol. 135, 041003 (2013)CrossRefGoogle Scholar
  24. [24]
    X. Wang, J. Xu, D. Shan, B. Guo, J. Cao, Mater. Des. 127, 134 (2017)CrossRefGoogle Scholar
  25. [25]
    X. Wang, J. Xu, Z. Jiang, W.L. Zhu, D. Shan, B. Guo, J. Cao, Mater. Sci. Eng., A 659, 215 (2016)CrossRefGoogle Scholar
  26. [26]
    W. Bao, X. Chu, S. Lin, J. Gao, Mater. Sci. Technol. 33, 1 (2016)Google Scholar
  27. [27]
    J. Deng, Y.C. Lin, S.S. Li, J. Chen, Y. Ding, Mater. Des. 49, 209 (2013)CrossRefGoogle Scholar
  28. [28]
    J. Luo, M. Li, W. Yu, H. Li, Mater. Des. 31, 741 (2010)CrossRefGoogle Scholar
  29. [29]
    X. Ye, J. Kuang, X. Li, G. Tang, J. Alloys Compd. 599, 1 (2014)CrossRefGoogle Scholar
  30. [30]
    X. Ye, Z.T.H. Tse, G. Tang, G. Song, Mater. Charact. 98, 147 (2014)CrossRefGoogle Scholar
  31. [31]
    X. Ye, Z.T.H. Tse, G. Tang, X. Li, G. Song, J. Mater. Process. Technol. 222, 27 (2015)CrossRefGoogle Scholar
  32. [32]
    S.O. Ojediran, O. Ajaja, J. Mater. Sci. 23, 4037 (1988)CrossRefGoogle Scholar
  33. [33]
    W.F. Cui, Z. Jin, A.H. Guo, L. Zhou, Mater. Sci. Eng., A 499, 252 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dong-Wei Ao
    • 1
  • Xing-Rong Chu
    • 1
  • Shu-Xia Lin
    • 1
  • Yang Yang
    • 2
  • Jun Gao
    • 1
  1. 1.Associated Engineering Research Center of Mechanics and Mechatronic EquipmentShandong UniversityWeihaiChina
  2. 2.A Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of MatterChinese Academy of ScienceFuzhouChina

Personalised recommendations