Phase Transformation and Carbide Precipitation of Functional Gradient Semi-solid 9Cr18 Steel

Article
  • 18 Downloads

Abstract

The unique phase transformation and carbide evolution in 9Cr18 steel were investigated during semi-solid forming and subsequent heat treatment. The functional gradient thixoforging 9Cr18 component was divided into inner area and edge area. Microstructure evolution was different at each area. After semi-solid cooling, the solid particles in the inner area were retained as meta-austenite. During annealing, M23C6 carbide began to precipitate when temperature reached 700 °C. Martensite transformation occurred when temperature reached 800 °C. The occurrence of M23C6 carbide and martensite structure would be harmful to the mechanical properties of inner area. In the edge area, the liquid underwent eutectic transformation to form bar-shape M7C3 carbide and secondary austenite after semi-solid cooling. The width of bar-shape carbide would decrease during annealing. By controlling the carbide evolution, we could tailor the functional gradient material with required property.

Keywords

Semi-solid forming Solid/liquid phase Annealing Carbide precipitation 

Notes

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 51175036) and the authors are also grateful to the support from the China Scholarship Council (CSC) (Grant No. 201606460014).

References

  1. [1]
    T. Balan, E. Becker, L. Langlois, R. Bigot, CIRP Ann. Manuf. Technol. 66, 297 (2017)CrossRefGoogle Scholar
  2. [2]
    M. Rosso, I. Peter, Int. J. Micro. Mater. Prop. 8, 113 (2013)Google Scholar
  3. [3]
    A. Neag, V. Favier, R. Bigot, M. Pop, J. Mater. Proc. Technol. 212, 1472 (2012)CrossRefGoogle Scholar
  4. [4]
    R.G. Guan, Z.Y. Zhao, X. Wang, C.G. Dai, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 26, 293 (2013)CrossRefGoogle Scholar
  5. [5]
    R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra, Sci. Rep. 6, 23154 (2016)CrossRefGoogle Scholar
  6. [6]
    S.P. Midson, Solid State Phenom. 217–218, 487 (2014)CrossRefGoogle Scholar
  7. [7]
    K.M. Kareh, C.O. Sullivan, T. Nagira, H. Yasuda, C.M. Gourlay, Acta Mater. 125, 187 (2017)CrossRefGoogle Scholar
  8. [8]
    L. Rogal, J. Dutkiewicz, Metall. Trans. A 43, 5009 (2012)CrossRefGoogle Scholar
  9. [9]
    G.C. Gu, R. Pesci, L. Langlois, E. Becker, R. Bigot, J. Mater. Proc. Technol. 216, 178 (2015)CrossRefGoogle Scholar
  10. [10]
    D. Uhlenhaut, J. Kradolfer, W. Puttgen, J. Loffler, P. Uggowitzer, Acta Mater. 54, 2727 (2006)CrossRefGoogle Scholar
  11. [11]
    L. Rogal, G. Korpala, J. Dutkiewicz, Mater. Sci. Eng., A 624, 291 (2015)CrossRefGoogle Scholar
  12. [12]
    C. Solenthaler, M. Ramesh, P.J. Uggowitzer, R. Spolenak, Mater. Sci. Eng., A 647, 294 (2015)CrossRefGoogle Scholar
  13. [13]
    J. Dong, X. Zhou, Y. Liu, C. Li, Mater. Sci. Eng., A 683, 215 (2017)CrossRefGoogle Scholar
  14. [14]
    Y. Li, Y. Gao, B. Xiao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi, J. Alloy. Compd. 509, 5242 (2011)CrossRefGoogle Scholar
  15. [15]
    C.Q. Zhao, R.B. Song, Mater. Des. 59, 502 (2014)CrossRefGoogle Scholar
  16. [16]
    Y.J. Wang, R.B. Song, Y.P. Li, Mater. Charact. 127, 64 (2017)CrossRefGoogle Scholar
  17. [17]
    Y.J. Wang, R.B. Song, Y.P. Li, Mater. Des. 86, 41 (2015)CrossRefGoogle Scholar
  18. [18]
    A. Rassili, Solid State Phenom. 256, 228 (2016)CrossRefGoogle Scholar
  19. [19]
    Y. Meng, J.S. Zhang, Y.S. Yi, J. Zhou, S. Sugiyama, J. Yanagimoto, J. Mater. Proc. Technol. 248, 275 (2017)CrossRefGoogle Scholar
  20. [20]
    C.Y. Xiong, P.F. Xue, F. Zhang, Y. Li, Mater. Charact. 133, 156 (2017)CrossRefGoogle Scholar
  21. [21]
    Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, J.X. Yu, Y. Huang, H.J. Li, W.Y. Li, J. Mater. Sci. Technol. 33, 1448 (2017)CrossRefGoogle Scholar
  22. [22]
    D. Aisman, H. Jirkova, L. Kucerova, B. Masek, J. Alloy. Compd. 509, S312 (2011)CrossRefGoogle Scholar
  23. [23]
    W. Puttgen, B. Hallstedt, W. Bleck, P.J. Uggowitzer, Acta Mater. 55, 1033 (2007)CrossRefGoogle Scholar
  24. [24]
    X. Luo, Y.Z. Liu, B. Wang, Acta Metall. Sin. (Engl. Lett.) 28, 1305 (2015)CrossRefGoogle Scholar
  25. [25]
    X.S. Zhou, Y.C. Liu, C.X. Liu, L.M. Yu, H.J. Li, Mater. Res. Innov. 19, S193 (2015)CrossRefGoogle Scholar
  26. [26]
    B.Q. Ning, X.S. Zhou, Q.Z. Shi, Y.C. Liu, J. Zhao, Z.P. Zhang, Int. J. Mater. Res. 105, 232 (2014)CrossRefGoogle Scholar
  27. [27]
    E. Smith, Acta Metal. 14, 583 (1966)CrossRefGoogle Scholar
  28. [28]
    S. Hong, Y.P. Wu, G.Y. Li, W.W. Gao, G.B. Ying, J. Alloy. Compd. 581, 398 (2013)CrossRefGoogle Scholar
  29. [29]
    J. Liu, W.P. Chen, Z.F. Jiang, L.S. Liu, Z.Q. Fu, Vacuum 137, 183 (2017)CrossRefGoogle Scholar
  30. [30]
    L. Rogal, J. Dutkiewicz, Mater. Charact. 68, 123 (2012)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  3. 3.Ansteel Mining Engineering CorporationAnshanChina

Personalised recommendations