Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 9, pp 953–962 | Cite as

Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites

  • En-Yang Liu
  • Si-Rong Yu
  • Ming Yuan
  • Fan-Guo Li
  • Yan Zhao
  • Wei Xiong


The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different temperatures for different time. The effects of semi-solid isothermal heat treatment on the microstructures and damping capacities of fly ash cenosphere/AZ91D composites were investigated. With the increase in isothermal temperature or holding time, the small liquid droplets within grains increased in size but decreased in quantity. The average size and shape factor of Mg2Si particles increased with the rise of isothermal temperature. The damping capacities of the composites were improved by isothermal heat treatment. At room temperature, the composites after heat treatment at 520 and 550 °C had a higher damping capacity due to interface damping when the strain amplitude was lower than about 8.8 × 10−5, and the composite after heat treatment at 580 °C had a better damping capacity because of the dislocation damping under the condition of high strain amplitude. The damping capacities of the composites increased with the rise of the test temperature, and the damping mechanisms varied depending on different test temperatures. The interface damping played an important role when the test temperature was below about 100 °C, and the dislocation damping and grain boundary damping took effect with the rise of test temperature.


Fly ash cenosphere Magnesium matrix composite Semi-solid isothermal heat treatment Microstructural evolution Damping capacity 



This work was supported by the Open Fund (No. OGE201702-07) of Key Laboratory of Oil and Gas Equipment, Ministry of Education (Southwest Petroleum University), the Key Research and Development Project of Shandong Province (No. 2016GGX102041), the Natural Science Foundation of Shandong Province (No. ZR2017LEM004) and the Fundamental Research Funds for the Central Universities of China (No. 18CX02091A).


  1. [1]
    W. Jiang, G. Li, Z. Fan, L. Wang, F. Liu, Metall. Mater. Trans. A 47, 2462 (2016)CrossRefGoogle Scholar
  2. [2]
    W.J. Joost, P.E. Krajewski, Scr. Mater. 128, 107 (2017)CrossRefGoogle Scholar
  3. [3]
    W. Jiang, Z. Fan, G. Li, L. Yang, X. Liu, Metall. Mater. Trans. A 47, 6487 (2016)CrossRefGoogle Scholar
  4. [4]
    Q. Yuan, X. Zeng, Y. Wang, L. Luo, Y. Ding, D. Li, Y. Liu, J. Mater. Sci. Technol. 33, 452 (2017)CrossRefGoogle Scholar
  5. [5]
    L. Chen, Y. Yao, Acta Metall. Sin. (Engl. Lett.) 27, 762 (2014)CrossRefGoogle Scholar
  6. [6]
    A. González, R. Navia, N. Moreno, Waste Manag. Res. 27, 976 (2009)CrossRefGoogle Scholar
  7. [7]
    R. Wasserman, A. Bentur, Cem. Concr. Res. 27, 525 (1997)CrossRefGoogle Scholar
  8. [8]
    L.C. Ram, R.E. Masto, Earth-Sci. Rev. 128, 52 (2014)CrossRefGoogle Scholar
  9. [9]
    A. Zhang, N. Wang, J. Zhou, P. Jiang, G. Liu, J. Hazard. Mater. 201, 68 (2012)CrossRefGoogle Scholar
  10. [10]
    M. Sarmah, B.P. Baruah, P. Khare, Fuel Process. Technol. 106, 490 (2013)CrossRefGoogle Scholar
  11. [11]
    F.A. Torralvo, C. Fernández-Pereira, Miner. Eng. 24, 35 (2011)CrossRefGoogle Scholar
  12. [12]
    J. Liu, Y. Dong, X. Dong, S. Hampshire, L. Zhu, Z. Zhu, L. Li, J. Eur. Ceram. Soc. 36, 1059 (2016)CrossRefGoogle Scholar
  13. [13]
    T. Matsunaga, J.K. Kim, S. Hardcastle, P.K. Rohatgi, Mater. Sci. Eng. A 325, 333 (2002)CrossRefGoogle Scholar
  14. [14]
    J.D.R. Selvam, D.S.R. Smart, I. Dinaharan, Mater. Des. 49, 28 (2013)CrossRefGoogle Scholar
  15. [15]
    M. Hrairi, M. Ahmed, Y. Nimir, Adv. Powder Technol. 20, 548 (2009)CrossRefGoogle Scholar
  16. [16]
    S. Sankaranarayanan, Q.B. Nguyen, R. Shabadi, A.H. Almajid, M. Gupta, Powder Metall. 59, 188 (2016)CrossRefGoogle Scholar
  17. [17]
    P.K. Rohatgi, A. Daoud, B.F. Schultz, T. Puri, Compos. Part A Appl. Sci. Manuf. 40, 883 (2009)CrossRefGoogle Scholar
  18. [18]
    N.N. Lu, X.J. Wang, L.L. Meng, C. Ding, W.Q. Liu, H.L. Shi, X.S. Hu, K. Wu, J. Alloys Compd. 650, 871 (2015)CrossRefGoogle Scholar
  19. [19]
    S.R. Yu, Z.Q. Huang, J. Mater. Eng. Perform. 23, 3480 (2014)CrossRefGoogle Scholar
  20. [20]
    Q.B. Nguyen, M.L.S. Nai, A.S. Nguyen, S. Seetharaman, E.W.W. Leong, M. Gupta, Mater. Sci. Technol. 32, 923 (2016)CrossRefGoogle Scholar
  21. [21]
    W. Huang, H. Luo, H. Lin, Y. Mu, B. Ye, J. Mater. Eng. Perform. 25, 587 (2016)CrossRefGoogle Scholar
  22. [22]
    Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, M.Y. Zheng, X.S. Hu, Mater. Des. 31, 4862 (2010)CrossRefGoogle Scholar
  23. [23]
    G. Parande, V. Manakari, G.K. Meenashisundaram, M. Gupta, Int. J. Mater. Res. 107, 1091 (2016)CrossRefGoogle Scholar
  24. [24]
    J.H. Jun, Mater. Trans. 53, 2064 (2012)CrossRefGoogle Scholar
  25. [25]
    W. Cao, C. Zhang, T. Fan, D. Zhang, Mater. Sci. Eng. A 496, 242 (2008)CrossRefGoogle Scholar
  26. [26]
    X. Zhang, L. Liao, N. Ma, H. Wang, Mater. Lett. 60, 600 (2006)CrossRefGoogle Scholar
  27. [27]
    M.C. Flemings, Metall. Trans. A 22, 957 (1991)CrossRefGoogle Scholar
  28. [28]
    X. Wu, F. Han, W.W. Wang, Trans. Nonferrous Met. Soc. China 19, s331 (2009)CrossRefGoogle Scholar
  29. [29]
    T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, Y. Hao, J. Alloys Compd. 505, 476 (2010)CrossRefGoogle Scholar
  30. [30]
    M. Yang, F. Pan, R. Cheng, L. Bai, J. Mater. Process. Technol. 206, 374 (2008)CrossRefGoogle Scholar
  31. [31]
    D. Yao, Y. Zhang, Mater. Lett. 166, 201 (2016)CrossRefGoogle Scholar
  32. [32]
    R.S. Blissett, N.A. Rowson, Fuel 97, 1 (2012)CrossRefGoogle Scholar
  33. [33]
    P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compos. Part A Appl. Sci. Manuf. 37, 430 (2006)CrossRefGoogle Scholar
  34. [34]
    Z. Huang, S. Yu, J. Alloys Compd. 509, 311 (2011)CrossRefGoogle Scholar
  35. [35]
    G.R. Ma, X.L. Li, L. Xiao, Q.F. Li, J. Alloys Compd. 496, 577 (2010)CrossRefGoogle Scholar
  36. [36]
    E. Liu, S. Yu, Y. Zhao, F. Li, S. Zhang, J. Li, M. Yuan, Rare Metal Mater. Eng. 46, 3298 (2017). (in Chinese) Google Scholar
  37. [37]
    T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, Y. Hao, J. Alloys Compd. 497, 147 (2010)CrossRefGoogle Scholar
  38. [38]
    A. Granato, K. Lücke, J. Appl. Phys. 27, 789 (1956)CrossRefGoogle Scholar
  39. [39]
    A. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)CrossRefGoogle Scholar
  40. [40]
    W. Huang, H. Zhan, L. Xu, Z. Xu, J. Zeng, Acta Metall. Sin. (Engl. Lett.) 22, 211 (2009)CrossRefGoogle Scholar
  41. [41]
    Y. Zhang, N. Ma, H. Wang, Mater. Lett. 61, 3273 (2017)CrossRefGoogle Scholar
  42. [42]
    A.V. Granato, K. Lücke, J. Appl. Phys. 52, 7136 (1981)CrossRefGoogle Scholar
  43. [43]
    K.F. Tam, S.C. Tjong, Mater. Sci. Technol. 20, 1055 (2004)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • En-Yang Liu
    • 1
    • 2
  • Si-Rong Yu
    • 1
  • Ming Yuan
    • 1
  • Fan-Guo Li
    • 1
  • Yan Zhao
    • 1
  • Wei Xiong
    • 1
  1. 1.College of Mechanical and Electrical EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.Key Laboratory of Oil and Gas Equipment of Education MinistrySouthwest Petroleum UniversityChengduChina

Personalised recommendations