Skip to main content
Log in

Crevice Corrosion Performance of 436 Ferritic Stainless Steel Studied by Different Electrochemical Techniques in Sodium Chloride Solutions with Sulfate Addition

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The crevice corrosion behaviors of 436 stainless steels in chloride-containing solutions with sulfate addition were studied using potentiodynamic, galvanostatic and repassivation potential measurements. The results of these electrochemical tests were compared and discussed. Galvanostatic test was proved to be the most powerful technique in detecting the crevice corrosion of 436 stainless steels, while the repassivation potential measurement was the most time-saving method in this study. Sulfate ions have inhibited the crevice corrosion of 436 stainless steels in chloride-containing solution, which may result from the effects of competitive adsorption and the IR drop mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 13 (1978)

    Article  Google Scholar 

  2. J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 104 (1978)

    Article  Google Scholar 

  3. H.W. Pickering, R.P. Frankenthal, J. Electrochem. Soc. 119, 1297 (1972)

    Article  Google Scholar 

  4. F. Bocher, R. Huang, J.R. Scully, Corrosion 66, 055002 (2010)

    Article  Google Scholar 

  5. J.R. Hayes, J.J. Gray, A.W. Szmodis, C.A. Orme, Corrosion 62, 491 (2006)

    Article  Google Scholar 

  6. B.A. Kehler, J.R. Scully, Corrosion 61, 665 (2005)

    Article  Google Scholar 

  7. B.A. Kehler, G.O. Ilevbare, J.R. Scully, Corrosion 57, 1042 (2001)

    Article  Google Scholar 

  8. F. Bocher, F. Presuel-Moreno, J.R. Scully, J. Electrochem. Soc. C 155, 256 (2008)

    Article  Google Scholar 

  9. X. He, B. Brettmann, H. Jung, Corrosion 65, 449 (2009)

    Article  Google Scholar 

  10. K.J. Evans, A. Yilmaz, S.D. Day, L.L. Wong, J.C. Estill, R.B. Rebak, JOM 57, 56 (2005)

    Article  Google Scholar 

  11. A.K. Mishra, G.S. Frankel, Corrosion 64, 836 (2008)

    Article  Google Scholar 

  12. G.O. Ilevbare, K.J. King, S.R. Gordon, H.A. Elayat, G.E. Gdowski, T. Gdowski, J. Electrochem. Soc. B 152, 547 (2005)

    Article  Google Scholar 

  13. D.D. Macdonald, A.C. Scott, P. Wentrcek, J. Electrochem. Soc. 126, 1618 (1979)

    Article  Google Scholar 

  14. A. Anderko, N. Sridhar, D.S. Dunn, Corros. Sci. 46, 1583 (2004)

    Article  Google Scholar 

  15. M. Rincón Ortiz, R.M. Carranza, M.A. Rodríguez, J. Phys: Conf. Ser. 786, 012034 (2017)

    Google Scholar 

  16. Y. Zuo, H. Du, J.P. Xiong, J. Mater. Sci. Technol. 16, 286 (2000)

    Google Scholar 

  17. Y. Zuo, H.T. Wang, J.M. Zhao, J.P. Xiong, Corros. Sci. 44, 13 (2002)

    Article  Google Scholar 

  18. Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 3481 (2010)

    Article  Google Scholar 

  19. Y.Y. Chen, L.B. Chou, H.C. Shih, Mater. Chem. Phys. 97, 37 (2006)

    Article  Google Scholar 

  20. L. Niu, K. Nakada, Corros. Sci. 96, 171 (2015)

    Article  Google Scholar 

  21. L. Niu, H. Kato, K. Shiokawa, K. Nakamura, M. Yamashita, Y. Sakai, Mater. Trans. 54, 2225 (2013)

    Article  Google Scholar 

  22. ASTM G48-03, Annual Book of ASTM Standards, vol. 03.05 (ASTM International, West Conshohocken, PA, 2005)

  23. Z. Szklarska-Smialowska, J. Mankowski, Corros. Sci. 11, 953 (1978)

    Article  Google Scholar 

  24. M.A.M. Ibrahim, S.S. Abd El Rehim, M.M. Hamza, Mater. Chem. Phys. 115, 80 (2009)

    Article  Google Scholar 

  25. Q. Yang, J.L. Luo, Electrochim. Acta 46, 851 (2001)

    Article  Google Scholar 

  26. M.A. Ameer, A.M. Fekry, F.E. Heakal, Electrochim. Acta 50, 43 (2004)

    Article  Google Scholar 

  27. S.S. El-Egamy, W.A. Badaway, J. Appl. Electrochem. 34, 1153 (2004)

    Article  Google Scholar 

  28. E. Meguid, N.A. Mahmoud, S. Rehim, Mater. Chem. Phys. 63, 67 (2000)

    Article  Google Scholar 

  29. Q. Hu, G. Zhang, Y. Qiu, X. Guo, Corros. Sci. 53, 4065 (2011)

    Article  Google Scholar 

  30. T. Aoyama, Y. Sugawara, I. Muto, N. Hara, Corros. Sci. 127, 131 (2017)

    Article  Google Scholar 

  31. C.S. Brossia, R.G. Kelly, Corrosion 54, 145 (1998)

    Article  Google Scholar 

  32. T. Aoyama, Y. Sugawara, I. Muto, N. Hara, Corros. Sci. 127, 131 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Baosteel for providing specimens. This work is financially supported by the National Natural Science Foundation of China (Nos. 51501041 and 51671059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JM., Qian, SS., Liu, YY. et al. Crevice Corrosion Performance of 436 Ferritic Stainless Steel Studied by Different Electrochemical Techniques in Sodium Chloride Solutions with Sulfate Addition. Acta Metall. Sin. (Engl. Lett.) 31, 815–822 (2018). https://doi.org/10.1007/s40195-018-0720-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0720-x

Keywords

Navigation