Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 4, pp 431–439 | Cite as

Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-oxidation Temperature

  • Lulu Wang
  • Mohammad Al-Mamun
  • Porun Liu
  • Yu Lin Zhong
  • Yun Wang
  • Hua Gui Yang
  • Huijun Zhao
Article

Abstract

Perovskite material is one of the promising classes of redox catalysts for hydrogen production through two-step thermochemical H2O splitting. Herein, an analogue of La1−xCa x MnO3 perovskite was systematically investigated as a catalyst for thermochemical H2 evolution. The Ca doping level (x = 0.2, 0.4, 0.6, 0.8) and re-oxidation temperature were comprehensively optimized for the improvement of catalytic performance. According to our experimental results, La0.6Ca0.4MnO3 perovskite displayed the highest yield of H2 at the re-oxidation temperature of 900 °C and the obtained H2 production was ~ 10 times higher than that of the benchmark ceria catalyst under the same experimental condition. More importantly, La0.6Ca0.4MnO3 perovskite catalyst exhibited impressive cyclic stability in repetitive O2 and H2 test.

Keywords

Thermochemical water splitting Hydrogen production Perovskite oxides Dopant level Re-oxidation temperature 

Notes

Acknowledgements

This work was financially supported by Australian Research Council (ARC) and the National Natural Science Foundation of China (Grant Nos. 51372248 and 51432009).

Supplementary material

40195_2018_715_MOESM1_ESM.docx (5.8 mb)
Supplementary material 1 (DOCX 5909 kb)

References

  1. [1]
    T.L. Root, J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig, J.A. Pounds, Nature 421, 57 (2003)CrossRefGoogle Scholar
  2. [2]
    P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, Nature 408, 184 (2000)CrossRefGoogle Scholar
  3. [3]
    L. Wang, M. Al-Mamun, P. Liu, Y. Wang, H.G. Yang, H.F. Wang, H. Zhao, NPG Asia Mater. 7, e226 (2015)CrossRefGoogle Scholar
  4. [4]
    Z. Tan, P. Liu, H. Zhang, Y. Wang, M. Al-Mamun, H.G. Yang, D. Wang, Z. Tang, H. Zhao, Chem. Commun. 51, 5695 (2015)CrossRefGoogle Scholar
  5. [5]
    L. Barelli, G. Bidini, F. Gallorini, S. Servili, Energy 33, 554 (2008)CrossRefGoogle Scholar
  6. [6]
    A.P. Simpson, A.E. Lutz, Int. J. Hydrog. Energy 32, 4811 (2007)CrossRefGoogle Scholar
  7. [7]
    E. Ochoa-Fernández, H.K. Rusten, H.A. Jakobsen, M. Rønning, A. Holmen, D. Chen, Catal. Today 106, 41 (2005)CrossRefGoogle Scholar
  8. [8]
    J.R. Bolton, Sol. Energy 57, 37 (1996)CrossRefGoogle Scholar
  9. [9]
    Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 6, 347 (2013)CrossRefGoogle Scholar
  10. [10]
    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrog. Energy 27, 991 (2002)CrossRefGoogle Scholar
  11. [11]
    S.Z. Baykara, Int. J. Hydrog. Energy 29, 1451 (2004)CrossRefGoogle Scholar
  12. [12]
    Y. Tamaura, A. Steinfeld, P. Kuhn, K. Ehrensberger, Energy 20, 325 (1995)CrossRefGoogle Scholar
  13. [13]
    T. Kodama, N. Gokon, Chem. Rev. 107, 4048 (2007)CrossRefGoogle Scholar
  14. [14]
    T. Kodama, Y. Nakamuro, T. Mizuno, J. Sol. Energy Eng. 128, 3 (2004)CrossRefGoogle Scholar
  15. [15]
    P. Charvin, S. Abanades, G. Flamant, F. Lemort, Energy 32, 1124 (2007)CrossRefGoogle Scholar
  16. [16]
    M.E. Gálvez, P.G. Loutzenhiser, I. Hischier, A. Steinfeld, Energy Fuels 22, 3544 (2008)CrossRefGoogle Scholar
  17. [17]
    A. Steinfeld, Int. J. Hydrog. Energy 27, 611 (2002)CrossRefGoogle Scholar
  18. [18]
    K. Wegner, H.C. Ly, R.J. Weiss, S.E. Pratsinis, A. Steinfeld, Int. J. Hydrog. Energy 31, 55 (2006)CrossRefGoogle Scholar
  19. [19]
    P.G. Loutzenhiser, A. Meier, A. Steinfeld, Materials 3, 4922 (2010)CrossRefGoogle Scholar
  20. [20]
    S. Abanades, P. Charvin, F. Lemont, G. Flamant, Int. J. Hydrog. Energy 33, 6021 (2008)CrossRefGoogle Scholar
  21. [21]
    P. Charvin, S. Abanades, F. Lemont, G. Flamant, AIChE J. 54, 2759 (2008)CrossRefGoogle Scholar
  22. [22]
    W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science 330, 1797 (2010)CrossRefGoogle Scholar
  23. [23]
    P. Furler, J. Scheffe, M. Gorbar, L. Moes, U. Vogt, A. Steinfeld, Energy Fuels 26, 7051 (2012)CrossRefGoogle Scholar
  24. [24]
    W.C. Chueh, S.M. Haile, Chemsuschem 2, 735 (2009)CrossRefGoogle Scholar
  25. [25]
    N. Gokon, S. Takahashi, H. Yamamoto, T. Kodama, Int. J. Hydrog. Energy 33, 2189 (2008)CrossRefGoogle Scholar
  26. [26]
    N. Gokon, H. Murayama, A. Nagasaki, T. Kodama, Sol. Energy 83, 527 (2009)CrossRefGoogle Scholar
  27. [27]
    T. Kodama, N. Gokon, R. Yamamoto, Sol. Energy 82, 73 (2008)CrossRefGoogle Scholar
  28. [28]
    D. Arifin, V.J. Aston, X. Liang, A.H. McDaniel, A.W. Weimer, Energy Environ. Sci. 5, 9438 (2012)CrossRefGoogle Scholar
  29. [29]
    J.R. Scheffe, J. Li, A.W. Weimer, Int. J. Hydrog. Energy 35, 3333 (2010)CrossRefGoogle Scholar
  30. [30]
    C.L. Muhich, B.D. Ehrhart, V.A. Witte, S.L. Miller, E.N. Coker, C.B. Musgrave, A.W. Weimer, Energy Environ. Sci. 8, 3687 (2015)CrossRefGoogle Scholar
  31. [31]
    J.R. Scheffe, R. Jacot, G.R. Patzke, A. Steinfeld, J. Phys. Chem. C 117, 24104 (2013)CrossRefGoogle Scholar
  32. [32]
    A. Le Gal, S. Abanades, J. Phys. Chem. C 116, 13516 (2012)CrossRefGoogle Scholar
  33. [33]
    A. Le Gal, S. Abanades, N. Bion, T. Le Mercier, V. Harlé, Energy Fuels 27, 6068 (2013)CrossRefGoogle Scholar
  34. [34]
    W.C. Chueh, S.M. Haile, Philos. Trans. R. Soc. A 368, 3269 (2010)CrossRefGoogle Scholar
  35. [35]
    Q.Q. Jiang, J.H. Tong, G.L. Zhou, Z.X. Jiang, Z. Li, C. Li, Sol. Energy 103, 425 (2014)CrossRefGoogle Scholar
  36. [36]
    A. Demont, S. Abanades, J. Mater. Chem. A 3, 3536 (2015)CrossRefGoogle Scholar
  37. [37]
    A. Demont, S. Abanades, E. Beche, J. Phys. Chem. C 118, 12682 (2014)CrossRefGoogle Scholar
  38. [38]
    A. Demont, S. Abanades, RSC Adv. 4, 54885 (2014)CrossRefGoogle Scholar
  39. [39]
    Z. Zhang, L. Andre, S. Abanades, Sol. Energy 134, 494 (2016)CrossRefGoogle Scholar
  40. [40]
    S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 114, 10292 (2014)CrossRefGoogle Scholar
  41. [41]
    J.R. Scheffe, D. Weibel, A. Steinfed, Energy Fuels 27, 4250 (2013)CrossRefGoogle Scholar
  42. [42]
    C.K. Yang, Y. Yamazaki, A. Aydin, S.M. Haile, J. Mater. Chem. A 2, 13612 (2014)CrossRefGoogle Scholar
  43. [43]
    A.H. McDaniel, E.C. Miller, D. Arifin, A. Ambrosini, E.N. Coker, R. O’Hayre, W.C. Chueh, J.H. Tong, Energy Environ. Sci. 6, 2424 (2013)CrossRefGoogle Scholar
  44. [44]
    A.H. Bork, M. Kubicek, M. Struzik, J.L.M. Rupp, J. Mater. Chem. A 3, 15546 (2015)CrossRefGoogle Scholar
  45. [45]
    S. Dey, B.S. Naidu, C.N.R. Rao, Chem. Eur. J. 21, 7077 (2015)CrossRefGoogle Scholar
  46. [46]
    S. Dey, B.S. Naidu, C.N.R. Rao, Dalton Trans. 45, 2430 (2016)CrossRefGoogle Scholar
  47. [47]
    M.E. Galvez, R. Jacot, J. Scheffe, T. Cooper, G. Patzke, A. Steinfeld, Phys. Chem. Chem. Phys. 17, 6629 (2015)CrossRefGoogle Scholar
  48. [48]
    T. Cooper, J.R. Scheffe, M.E. Galvez, R. Jacot, G. Patzke, A. Steinfeld, Energy Technol. 3, 1130 (2015)CrossRefGoogle Scholar
  49. [49]
    S. Dey, B.S. Naidu, A. Govindaraj, C.N.R. Rao, Phys. Chem. Chem. Phys. 17, 122 (2015)CrossRefGoogle Scholar
  50. [50]
    Y.-S. Han, H.-G. Kim, J. Power Sources 88, 161 (2000)CrossRefGoogle Scholar
  51. [51]
    M. Al-Mamun, H. Yin, P. Liu, X. Su, H. Zhang, H. Yang, D. Wang, Z. Tang, Y. Wang, H. Zhao, Nano Res. 10, 3522 (2017)CrossRefGoogle Scholar
  52. [52]
    G. Kron, T. Egerter, J.H. Werner, U. Rau, J. Phys. Chem. B 107, 3556 (2003)CrossRefGoogle Scholar
  53. [53]
    Y. Hao, C.K. Yang, S.M. Haile, Chem. Mater. 26, 6073 (2014)CrossRefGoogle Scholar
  54. [54]
    J. Fernández, M. Sotenko, V. Derevschikov, A. Lysikov, E.V. Rebrov, Chem. Eng. Process. 108, 17 (2016)CrossRefGoogle Scholar
  55. [55]
    M.A. Peña, J.L.G. Fierro, Chem. Rev. 101, 1981 (2001)CrossRefGoogle Scholar
  56. [56]
    A.M. Deml, V. Stevanović, A.M. Holder, M. Sanders, R. O’Hayre, C.B. Musgrave, Chem. Mater. 26, 6595 (2014)CrossRefGoogle Scholar
  57. [57]
    A.M. Deml, A.M. Holder, R.P. O’Hayre, C.B. Musgrave, V. Stevanović, J. Phys. Chem. Lett. 6, 1948 (2015)CrossRefGoogle Scholar
  58. [58]
    G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)CrossRefGoogle Scholar
  59. [59]
    A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells 44, 99 (1996)CrossRefGoogle Scholar
  60. [60]
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)CrossRefGoogle Scholar
  61. [61]
    L. Wang, M. Al-Mamun, Y.L. Zhong, L. Jiang, P. Liu, Y. Wang, H.G. Yang, H. Zhao, Sustain. Energy Fuels 1, 1013 (2017)Google Scholar
  62. [62]
    L. Wang, M. Al-Mamun, P. Liu, Y. Wang, H. Gui Yang, H. Zhao, Chin. J. Catal. 38, 1079 (2017)CrossRefGoogle Scholar
  63. [63]
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)CrossRefGoogle Scholar
  64. [64]
    M. Al-Mamun, Y. Wang, P. Liu, Y.L. Zhong, H. Yin, X. Su, H. Zhang, H. Yang, D. Wang, Z. Tang, H. Zhao, J. Mater. Chem. A 4, 18314 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lulu Wang
    • 1
  • Mohammad Al-Mamun
    • 1
  • Porun Liu
    • 1
  • Yu Lin Zhong
    • 1
  • Yun Wang
    • 1
  • Hua Gui Yang
    • 2
  • Huijun Zhao
    • 1
    • 3
  1. 1.Centre for Clean Environment and Energy, Gold Coast CampusGriffith UniversitySouthportAustralia
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.Centre for Environmental and Energy Nanomaterials, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations