Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 533–546 | Cite as

Fast Degradation of Green Pollutants Through Nanonets and Nanofibers of the Al-Doped Zinc Oxide

  • Osama Saber
  • Haifa Alomair
  • Mohamed Abu-Abdeen
  • Abdullah Aljaafari
Article
  • 67 Downloads

Abstract

In this study, series of nanolayered structures of Zn–Al LDHs were prepared by urea hydrolysis. Nanofibers and nanonets of the Al-doped ZnO were formed via the decomposition of the nanolayers under high pressure and temperature. Nanospheres were also prepared for comparison. The different morphologies of the prepared nanomaterials were confirmed by several techniques. An improvement for the optical properties of the doped zinc oxides was observed through narrowing of their band gap energies because of transforming the nanolayers to nanonets and nanofibers. The photocatalytic activities of the prepared nanomaterials were studied through photocatalytic degradation of the pollutants of acid green dyes. Complete decolorization and mineralization of green dyes happened in the presence of the nanolayers and nanospheres within 4–6 h, while the nanonets and the nanofibers achieved the complete decolorization and degradation of the dyes at shorter time 1.3 h. These results could be explained though the kinetic study of the photocatalytic degradation of dyes. It was concluded that the nanonets and the nanofibers were very effective for the photocatalytic degradation of pollutants.

Keywords

Al-doped ZnO nanolayers Nanofibers Nanonets Band gap energy Photocatalytic degradation Acid green dyes pollutants 

Notes

Acknowledgements

The authors thank the Deanship of Scientific Research in King Faisal University (Saudi Arabia) for funding and providing the facilities required for this research as a part of Annual Research Grants Program (No. 170047).

References

  1. [1]
    K.E. Trenberth, A. Dai, G. van der Schrier, P.D. Jones, J. Barichivich, K.R. Briffa, Nat. Clim. Change 4, 17 (2014)CrossRefGoogle Scholar
  2. [2]
    S. Ayrault, P. Le Pape, O. Evrard, C.R. Priadi, C. Quantin, P. Bonté, M. Roy-Barman, Environ. Sci. Pollut. Res. 21, 413 (2014)CrossRefGoogle Scholar
  3. [3]
    X. Miao, Y. Tang, C.W. Wong, Nature 518, 483 (2015)CrossRefGoogle Scholar
  4. [4]
    X. Yuan, L. Zhang, J. Li, C. Wang, J. Ji, Catena 119, 52 (2014)CrossRefGoogle Scholar
  5. [5]
    V. Belenguer, F. Martinez-Capel, A. Masiá, Y. Picó, J. Hazard. Mater. 265, 271 (2014)CrossRefGoogle Scholar
  6. [6]
    M. Fujita, Y. Ide, D. Sato, P.S. Kench, Y. Kuwahara, H. Yokoki, Chemosphere 95, 628 (2014)CrossRefGoogle Scholar
  7. [7]
    J. Sherman, D. Gaal, Materials management and pollution prevention, in The Role of Anesthesiology in Global Health (Springer, Berlin, 2015)Google Scholar
  8. [8]
    S. Wang, J. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, J. Mater. Sci. Technol. 33, 1 (2017)CrossRefGoogle Scholar
  9. [9]
    B.D. Mert, B. Yazıcı, Acta Metall. Sin. (Engl. Lett.) 28, 858 (2015)CrossRefGoogle Scholar
  10. [10]
    S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’shea, J.A. Byrne, D.D. Dionysiou, J. Phys. Chem. Lett. 5, 2543 (2014)CrossRefGoogle Scholar
  11. [11]
    N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A Chem. 162, 317 (2004)CrossRefGoogle Scholar
  12. [12]
    M.J. Chithra, M. Sathya, K. Pushpanathan, Acta Metall. Sin. (Engl. Lett.) 28, 394 (2015)CrossRefGoogle Scholar
  13. [13]
    H.S. Al-Salman, M.J. Abdullah, Acta Metall. Sin. (Engl. Lett.) 28, 230 (2015)CrossRefGoogle Scholar
  14. [14]
    Q. Wang, C. Tang, C. Jiang, D. Du, F. Wang, J. Song, Acta Metall. Sin. (Engl. Lett.) 29, 237 (2016)CrossRefGoogle Scholar
  15. [15]
    W. Zhou, X. Li, L. Qin, S. Kang, J. Mater. Sci. Technol. 33, 47 (2017)CrossRefGoogle Scholar
  16. [16]
    C. Liu, H. Xu, L. Wang, X. Qin, Acta Metall. Sin. (Engl. Lett.) 30, 36 (2017)CrossRefGoogle Scholar
  17. [17]
    X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 29, 3097 (2013)CrossRefGoogle Scholar
  18. [18]
    Y. Leung, X. Chen, A. Ng, M. Guo, F. Liu, A. Djurisic, W. Chan, X. Shi, M. Van Hove, Appl. Surf. Sci. 271, 202 (2013)CrossRefGoogle Scholar
  19. [19]
    S. Lee, T. Lim, J. Roh, C. Ju, S. Park, S. Hong, S. Lee, G. Lee, in Proceedings of the 4th International Congress of Chemistry and Environment, Ubon Ratchathani, 2009Google Scholar
  20. [20]
    H. Chen, L. Zhao, X. He, G. Wang, X. Wang, W. Fang, X. Du, Acta Metall. Sin. (Engl. Lett.) 30, 104 (2017)CrossRefGoogle Scholar
  21. [21]
    J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Curr. Appl. Phys. 12, 998 (2012)CrossRefGoogle Scholar
  22. [22]
    J. Sin, S. Lam, K. Lee, A. Mohamed, Ceram. Int. 39, 5833 (2013)CrossRefGoogle Scholar
  23. [23]
    M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697 (2013)CrossRefGoogle Scholar
  24. [24]
    L. Huang, N. Ren, B. Li, M. Zhou, Acta Metall. Sin. (Engl. Lett.) 28, 281 (2015)CrossRefGoogle Scholar
  25. [25]
    O. Saber, T. Ali, A.A. Aljaafari, Water. Air Soil Poll. 223, 4615 (2012)CrossRefGoogle Scholar
  26. [26]
    X. Zhang, J. Bai, H. Zhang, Appl. Clay Sci. 119, 410 (2016)CrossRefGoogle Scholar
  27. [27]
    O. Saber, Curr. Nanosci. 7, 134 (2011)CrossRefGoogle Scholar
  28. [28]
    Q. Wang, Y. Gao, J. Luo, Z. Zhong, A. Borgna, Z. Guo, D. O’Hare, RSC Adv. 3, 3414 (2013)CrossRefGoogle Scholar
  29. [29]
    G. Chen, S. Qian, X. Tu, X. Wei, J. Zou, L. Leng, S. Luo, Appl. Surf. Sci. 293, 345 (2014)CrossRefGoogle Scholar
  30. [30]
    R. Wang, Z. Yang, RSC Adv. 3, 19924 (2013)CrossRefGoogle Scholar
  31. [31]
    B. Hai, Y. Zou, Sensors Actuators B-Chem. 208, 143 (2015)CrossRefGoogle Scholar
  32. [32]
    G. Abellán, C. Martí-Gastaldo, A. Ribera, E. Coronado, Acc. Chem. Res. 48, 1601 (2015)CrossRefGoogle Scholar
  33. [33]
    M. Shao, R. Zhang, Z. Li, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 51, 15880 (2015)CrossRefGoogle Scholar
  34. [34]
    K. Abderrazek, F.S. Najoua, E. Srasra, Appl. Clay Sci. 119, 229 (2016)CrossRefGoogle Scholar
  35. [35]
    N. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley, New York, 1986)Google Scholar
  36. [36]
    A. Vaccari, Appl. Clay Sci. 14, 161 (1999)CrossRefGoogle Scholar
  37. [37]
    S. Miyata, Clays Clay Miner. 23, 369 (1995)CrossRefGoogle Scholar
  38. [38]
    F.M. Labajos, V. Rives, M.A. Ulibarri, J. Mater. Sci. 27, 1546 (1992)CrossRefGoogle Scholar
  39. [39]
    H. Hansen, C. Koch, Appl. Clay Sci. 10, 5 (1995)CrossRefGoogle Scholar
  40. [40]
    M. Ogawa, T. Ishiic, N. Miyamotoc, K. Kuroda, Appl. Clay Sci. 22, 179 (2003)CrossRefGoogle Scholar
  41. [41]
    N. Ahmed, Y. Shibata, T. Taniguchi, Y. Izumi, J. Catal. 279, 123 (2011)CrossRefGoogle Scholar
  42. [42]
    J.I. Pankove, Optical Processes in Semiconductor (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
  43. [43]
    P.A. Wolf, Phys. Rev. 126, 405 (1962)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Osama Saber
    • 1
    • 2
  • Haifa Alomair
    • 3
  • Mohamed Abu-Abdeen
    • 1
  • Abdullah Aljaafari
    • 1
  1. 1.Faculty of ScienceKing Faisal UniversityAl-HasaSaudi Arabia
  2. 2.Egyptian Petroleum Research InstituteNasr City, CairoEgypt
  3. 3.Ministry of EducationAl-HasaSaudi Arabia

Personalised recommendations