Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31


Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy were calculated to characterize the deformation mechanism. Then, the effects of hot deformation parameters on deformation mechanism, microstructure evolution and hot workability of AZ31 alloy were discussed. With increasing deformation temperature, the operation of non-basal slip systems and full development of dynamic recrystallization (DRX) contribute to effective improvement in hot workability of AZ31 alloy. The influences of strain rate and strain are complex. When temperature exceeds 350 °C, the deformation mechanism is slightly dependent of the strain rate or strain. The dominant mechanism is dislocation cross-slip, which favors DRX nucleation and grain growth and thus leads to good plasticity. At low temperature (below 350 °C), the deformation mechanism is sensitive to strain and strain rate. Both the dominant deformation mechanism and inadequate development of DRX deteriorate the ductility of AZ31 alloy. The flow instability mainly occurs in the vicinity of 250 °C and 1 s−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. [1]

    K. Liu, X.H. Dong, H.Y. Xie, F. Peng, Mater. Sci. Eng., A 623, 97 (2015)

    Article  Google Scholar 

  2. [2]

    S. Housh, B. Mikucki, A. Stevenson, Selection and application of magnesium and magnesium alloys, 10th edn. (ASM International, Materials Park, OH, 1990), p. 455

    Google Scholar 

  3. [3]

    W.L. Cheng, Q.W. Tian, H. Yu, B.S. You, H.X. Wang, Mater. Des. 85, 762 (2015)

    Article  Google Scholar 

  4. [4]

    W.L. Cheng, Z.P. Que, J.S. Zhang, C.X. Xu, W. Liang, B.S. You, S.S. Park, Int. J. Miner. Metall. Mater. 20, 49 (2013)

    Article  Google Scholar 

  5. [5]

    K.R. Athul, U.T.S. Pillai, A. Srinivasan, B.C. Pai, Adv. Eng. Mater. 18, 770 (2016)

    Article  Google Scholar 

  6. [6]

    P. Zhou, Q.X. Ma, Acta Metall. Sin. (Engl. Lett.) 30, 907 (2017)

    Article  Google Scholar 

  7. [7]

    J. Han, J.P. Sun, Y. Han, H. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 1080 (2017)

    Article  Google Scholar 

  8. [8]

    G.Z. Quan, H.R. Wen, J. Pan, Z.Y. Zou, Int. J. Precis. Eng. Manuf. 17, 171 (2016)

    Article  Google Scholar 

  9. [9]

    Y.Y. Dong, C.S. Zhang, G.Q. Zhao, Y.J. Guan, A.J. Gao, W.C. Sun, Mater. Des. 92, 983 (2016)

    Article  Google Scholar 

  10. [10]

    Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29, 422 (2016)

    Article  Google Scholar 

  11. [11]

    C. Poletti, H. Dieringa, F. Warchomicka, Mater. Sci. Eng., A 516, 138 (2009)

    Article  Google Scholar 

  12. [12]

    Y.V.R.K. Prasad, K.P. Rao, Mater. Des. 30, 3723 (2009)

    Article  Google Scholar 

  13. [13]

    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng., A 487, 316 (2008)

    Article  Google Scholar 

  14. [14]

    N. Srinivasan, Y.V.R.K. Prasad, P.R. Rao, Mater. Sci. Eng., A 476(1–2), 146 (2008)

    Article  Google Scholar 

  15. [15]

    W.P. Peng, P.J. Li, P. Zeng, L.P. Lei, Mater. Sci. Eng., A 494(1–2), 173 (2008)

    Article  Google Scholar 

  16. [16]

    Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Vacuum 137, 104 (2017)

    Article  Google Scholar 

  17. [17]

    G.A. He, L.M. Tan, F. Liu, L. Huang, Z.W. Huang, L. Jiang, Materials 10, 161 (2017)

    Article  Google Scholar 

  18. [18]

    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984)

    Article  Google Scholar 

  19. [19]

    Z.Y. Jin, N.N. Li, K. Yan, J.X. Chen, D.L. Wei, Z.S. Cui, Acta Metall. Sin. (Engl. Lett.) (2017).

    Google Scholar 

  20. [20]

    P. Dadras, J.F. Thomas, Metall. Trans. A 12, 1867 (1981)

    Article  Google Scholar 

  21. [21]

    S.V.S.N. Murty, M.S. Sarma, B.N. Rao, Metall. Mater. Trans. A 28, 1581 (1997)

    Article  Google Scholar 

  22. [22]

    S.V.S.N. Murty, B.N. Rao, B.P. Kashyap, Mater. Process. Technol. 166, 279 (2005)

    Article  Google Scholar 

  23. [23]

    Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot working guide: a compendium of processing maps, 2nd edn. (ASM International, Materials Park, OH, 2015), p. 13

    Google Scholar 

  24. [24]

    C.M. Sellars, W.J.M. Tegart, Int. Metall. Rev. 17, 1 (1972)

    Google Scholar 

  25. [25]

    D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, X.M. Chen, J. Alloys Compd. 649, 1075 (2015)

    Article  Google Scholar 

  26. [26]

    Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. (Engl. Lett.) 29, 441 (2016)

    Article  Google Scholar 

  27. [27]

    H.J. Frost, M.F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics (Pergamon Press, Oxford, 1982), p. 44

    Google Scholar 

  28. [28]

    R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng., A 395, 338 (2005)

    Article  Google Scholar 

  29. [29]

    H. Yoshinaga, R. Horiuchi, Trans. Jpn. Inst. Metals 5, 14 (1964)

    Article  Google Scholar 

  30. [30]

    P.W. Flynn, J. Mote, J.E. Dorn, Trans. Metall. Soc. AIME 221, 1148 (1961)

    Google Scholar 

  31. [31]

    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng., A 432, 170 (2006)

    Article  Google Scholar 

  32. [32]

    T. Obara, H. Yoshinga, S. Morozumi, Acta Metall. 21, 845 (1973)

    Article  Google Scholar 

  33. [33]

    Z. Feng, X. Zhang, F. Pan, Rare Metal. Mater. Eng. 41, 1765 (2012)

    Google Scholar 

  34. [34]

    D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu, Scr. Metall. 3, 927 (1969)

    Article  Google Scholar 

  35. [35]

    M.H. Yoo, S.R. Agnew, J.R. Morris, K.M. Ho, Mater. Sci. Eng., A 319, 87 (2001)

    Article  Google Scholar 

  36. [36]

    D.X. Wen, Y.C. Lin, Y. Zhou, Vacuum 141, 316 (2017)

    Article  Google Scholar 

  37. [37]

    Z.Y. Jin, D.H. Yu, X.T. Wu, K. Yin, K. Yan, J. Mater. Sci. Technol. 32, 1260 (2016)

    Article  Google Scholar 

  38. [38]

    J.R. Morris, J. Scharff, K.M. Ho, D.E. Turner, Y.Y. Ye, M.H. Yoo, Philos. Mag. A 76, 1065 (1997)

    Article  Google Scholar 

  39. [39]

    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)

    Article  Google Scholar 

  40. [40]

    D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, D.X. Wen, J. Alloys Compd. 708, 938 (2017)

    Article  Google Scholar 

  41. [41]

    Z.H. Zhou, Q.C. Fan, Z.H. Xia, A.G. Hao, W.H. Yang, W. Ji, H.Q. Cai, J. Mater. Sci. Technol. 33, 637 (2017)

    Article  Google Scholar 

  42. [42]

    F. Berge, L. Krüger, H. Ouaziz, C. Ullrich, Trans. Nonferrous Met. Soc. China 25, 1 (2015)

    Article  Google Scholar 

  43. [43]

    D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, M. He, Mater. Sci. Eng., A 620, 319 (2015)

    Article  Google Scholar 

  44. [44]

    J. Koike, Mater. Sci. Forum 419, 189 (2003)

    Article  Google Scholar 

  45. [45]

    J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Mater. Trans. 44, 445 (2005)

    Article  Google Scholar 

  46. [46]

    H.Y. Wu, C.T. Wu, J.C. Yang, M.J. Lin, Mater. Sci. Eng., A 607, 261 (2014)

    Article  Google Scholar 

Download references


This work was supported financially by the National Key Research and Development Program of China (No. 2016YFC1102402), the National Natural Science Foundation of China (No. 31570961) and the Natural Science Foundation of Jiangsu Province (No. BK20160968).

Author information



Corresponding author

Correspondence to Zhao-Yang Jin.

Additional information

Available online at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, ZY., Li, NN., Yan, K. et al. Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31. Acta Metall. Sin. (Engl. Lett.) 31, 71–81 (2018).

Download citation


  • Hot workability
  • Deformation mechanism
  • Dynamic recrystallization
  • Activation energy
  • Magnesium alloy