Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 552–560 | Cite as

Effect of Trace O Element on High-temperature Wettability Between Ni3Al Melt and Y2O3 Ceramic

  • Peng Bai
  • Hua-Rui Zhang
  • Bei-Bei Wan
  • Chao Ran
  • Hu Zhang


Effect of trace O element on the high-temperature wettability between Ni3Al scrap melt and Y2O3 ceramic at 1873 K is investigated. With the increase in O content in Ni3Al scrap melt from 6 to 21 ppm, the equilibrium contact angle decreases from 93.3° to 88.9°. The initial surface tension and adhesive work of molten Ni3Al scrap drop from 3153.5 to 807.4 mN m−1 and from 2974.6 to 882.2 mN m−1, respectively. The average spreading rate increases from 0.03° s−1  to 0.17° s−1. The whole wetting processes are divided into four periods. The main driving force for spreading in period (1) is the adsorption and diffusion of active atoms around the interface. Trace O content in Ni3Al scrap has a significant impact on interfacial reactions which mostly take place in the second stage, and can accelerate the spreading process on Y2O3 substrate. The reaction products during wetting process are Y3Al5O12, YAlO3 and Al2O3.


Ni3Al scrap Wetting Interaction Yttria Oxygen content 



This work was supported financially by the National Science & Technology Pillar Program of China (No. 2013BAB11B04) and the National Natural Science Foundation of China (No. 51404017). Furthermore, the authors wish to express their appreciations to the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology and the group of Prof. Ping Shen of Jilin University for the help of the wetting experiments.


  1. [1]
    W.Y. Zhao, Y.Z. Liu, S.S. Li, S.K. Gong, Oxid. Met. 81, 631 (2014)CrossRefGoogle Scholar
  2. [2]
    X.H. Zhao, Z.H. Huang, Y.N. Tan, Q. Zhang, Y.U. Qian, H.B. Xu, J. Aeronaut. Mater. 26, 20 (2006). (in Chinese)Google Scholar
  3. [3]
    N.V. Kazantseva, B.A. Greenberg, E.V. Shorokhov, A.N. Pirogov, Y.A. Dorofeev, Phys. Met. Metall. 99, 535 (2005)Google Scholar
  4. [4]
    Y. Cheng, H. Zhang, L.W. Song, Y. Ma, S.S. Li, S.K. Gong, Chin. J. Nonferrous Met. 22, 510 (2012)CrossRefGoogle Scholar
  5. [5]
    Y.W. Zhang, F.M. Wang, B.F. Hu, Acta Metall. Sin. 48, 1011 (2012). (in Chinese) CrossRefGoogle Scholar
  6. [6]
    G.A. Rao, M. Srinivas, D.S. Sarma, Mater. Sci. Eng. A 435, 84 (2006)CrossRefGoogle Scholar
  7. [7]
    C.F. Chai, Y.Q. Yang, Y.H. Zhang, Acta Metall. Sin. (Engl. Lett.) 21, 220 (2008)CrossRefGoogle Scholar
  8. [8]
    A. Kostov, B. Friedrich, Comput. Mater. Sci. 38, 374 (2007)CrossRefGoogle Scholar
  9. [9]
    K. Sakamoto, K. Yoshikawa, T. Kusamichi, T. Onoye, ISIJ Int. 32, 616 (1992)CrossRefGoogle Scholar
  10. [10]
    J. Barbosa, H. Puga, C.S. Ribeiro, O.M.N.D. Teodoro, A.C. Monteiro, Int. J. Cast Met. Res. 19, 331 (2006)CrossRefGoogle Scholar
  11. [11]
    T. Tetsui, T. Kobayashi, T. Ueno, H. Harada, Intermetallics 31, 274 (2012)CrossRefGoogle Scholar
  12. [12]
    H.R. Zhang, X.X. Tang, C.G. Zhou, H. Zhang, S.W. Zhang, J. Eur. Ceram. Soc. 33, 925 (2013)CrossRefGoogle Scholar
  13. [13]
    M. Gao, L.N. Jia, X.X. Tang, R.J. Cui, H. Zhang, China Foundry 08, 190 (2011)Google Scholar
  14. [14]
    C. Ran, H.R. Zhang, H. Zhang, B.B. Wan, P. Bai, Acta Metall. Sin. (Engl. Lett.) 5, 1 (2017)Google Scholar
  15. [15]
    D. Matthias, N. Achim, K.P. Trumble, R. Jürgen, J. Am. Ceram. Soc. 82, 2825 (1999)Google Scholar
  16. [16]
    M.L. Muolo, F. Valenza, A. Passerone, D. Passerone, Mater. Sci. Eng. A 495, 153 (2008)CrossRefGoogle Scholar
  17. [17]
    O. Dezellus, F. Hodaj, N. Eustathopoulos, Acta Mater. 50, 4741 (2002)CrossRefGoogle Scholar
  18. [18]
    I.A. Aksay, C.E. Hoge, J.A. Pask, J. Phys. Chem. 78, 12 (1974)CrossRefGoogle Scholar
  19. [19]
    E. Saiz, A.P. Tomsia, Curr. Opin. Solid State Mater. Sci. 9, 167 (2006)CrossRefGoogle Scholar
  20. [20]
    E. Saiz, R.M. Cannon, A.P. Tomsia, Acta Mater. 48, 4449 (2000)CrossRefGoogle Scholar
  21. [21]
    C.J. Xuan, Z. Zhao, P.G. Jönsson, J. Eur. Ceram. Soc. 36, 2435 (2016)CrossRefGoogle Scholar
  22. [22]
    V. Naidich, K. Rasplavakh, A. Naukukra. SSP Naukova Dumka Kiev (1972) (in Russian)Google Scholar
  23. [23]
    K. Ogino, A. Adachi, K. Nogi, Tetsu-to-Hagané 59, 1237 (1973)Google Scholar
  24. [24]
    F. Valenza, M.L. Muolo, A. Passerone, J. Mater. Sci. 45, 2071 (2010)CrossRefGoogle Scholar
  25. [25]
    S. Barzilai, M. Aizenshtein, N. Froumin, N. Frage, Mater. Sci. Eng. A 420, 291 (2006)CrossRefGoogle Scholar
  26. [26]
    H. Yasuda, I. Ohnaka, Y. Mizutani, Y. Waku, Sci. Technol. Adv. Mater. 2, 67 (2001)CrossRefGoogle Scholar
  27. [27]
    B. Cockayne, J. Less Commun. Met. 114, 199 (1985)CrossRefGoogle Scholar
  28. [28]
    J.L. Caslavsky, D.J. Viechnicki, J. Mater. Sci. 15, 1709 (1980)CrossRefGoogle Scholar
  29. [29]
    M.L. Muolo, F. Valenza, A. Passerone, D. Passerone, Mater. Sci. Eng. A 495, 153 (2008)CrossRefGoogle Scholar
  30. [30]
    D. Chatain, F. Chabert, V. Ghetta, J. Fouletier, J. Am. Ceram. Soc. 76, 1568 (2010)CrossRefGoogle Scholar
  31. [31]
    N. Eustathopoulos, Acta Mater. 46, 2319 (1998)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Key Laboratory for Advanced Functional Material and Thin Film TechnologyBeihang UniversityBeijingChina

Personalised recommendations