Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 471–476 | Cite as

Gamma-phase influence on shape memory properties in Ni-Mn-Co-Ga-Gd high-temperature shape memory alloys

  • Wei Zhang
  • Xin Zhang
  • Qian Wang
  • Qing-Suo Liu


The effect of γ-phase on two-way shape memory effect (TWSME) of polycrystalline Ni56Mn25-x Co x Ga18.9Gd0.1 alloys was investigated. The results show that an appropriate amount of ductile γ-phase significantly enhances the TWSME. The largest TWSME of 1.4% without training is observed in Ni56Mn21Co4Ga18.9Gd0.1 alloy, and this value is increased to 2.0% after thermomechanical training. The as-trained TWSME decays over the first five thermal cycles and then reaches a stable value as the number of cycles further increasing. Only the degradation of 0.2% is observed after 100 thermal cycles. The better TWSME and thermal stability are ascribed to the stable extra stress field formed by the plastically deformed γ-phase.


Shape memory alloys Ni–Mn–Ga alloys Thermomechanical training Second phase Two-way shape memory effect 



This work was supported by the National Natural Science Foundation of China (No. 51601126), the Student’s Platform for Innovation and Entrepreneurship Training Program (No. 201710060118) and China Postdoctoral Science Foundation (No. 2016M601271).


  1. [1]
    Z. Balak, S.M. Abbasi, Mater. Design 32, 3992 (2011)CrossRefGoogle Scholar
  2. [2]
    Y.N. Liu, Y. Liu, J. Van Humbeeck, Acta Mater. 47, 199 (1998)CrossRefGoogle Scholar
  3. [3]
    Y.Q. Ma, C.B. Jiang, Y. Li, H.B. Xu, C.P. Wang, X.J. Liu, Acta Mater. 55, 1533 (2007)CrossRefGoogle Scholar
  4. [4]
    V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko, Scr. Metall. Mater. 33, 123 (1995)CrossRefGoogle Scholar
  5. [5]
    X. Zhang, J.H. Sui, Z.Y. Yang, X.H. Zheng, W. Cai, Mater. Lett. 123, 250–253 (2014)CrossRefGoogle Scholar
  6. [6]
    X. Zhang, Q.S. Liu, X.S. Zeng, J.H. Sui, W. Cai, H.B. Wang, Y. Feng, Intermetallics 68, 113 (2016)CrossRefGoogle Scholar
  7. [7]
    Y. Xin, Y. Li, L. Chai, H.B. Xu, Scr. Mater. 57, 599 (2007)CrossRefGoogle Scholar
  8. [8]
    S.Y. Yang, Y.Q. Ma, H.F. Jiang, X.J. Liu, Intermetallics 19, 225 (2011)CrossRefGoogle Scholar
  9. [9]
    X. Zhang, J.H. Sui, X.H. Zheng, Z.Y. Yang, W. Cai, Mater. Sci. Eng. A A597, 178 (2014)CrossRefGoogle Scholar
  10. [10]
    V.V. Kokorin, V.A. Chernenko, Phys. Met. Metall. 68, 111 (1989)Google Scholar
  11. [11]
    M. Ohtsuka, M. Matsumoto, K. Itadaki, J. Intel. Mat. Syst. Str. 17, 1069 (2006)CrossRefGoogle Scholar
  12. [12]
    W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, S.X. Gao, W.S. Zhan, Z. Wang, Z.Y. Gao, Y.F. Zheng, L.C. Zhao, Appl. Phys. Lett. 77, 3245 (2000)CrossRefGoogle Scholar
  13. [13]
    J.D. Callaway, R.F. Hamilton, H. Sehitoglu, N. Miller, H.J. Maier, Y. Chumlyakov, Smart Mater. Struct. 16, 108 (2007)CrossRefGoogle Scholar
  14. [14]
    V.A. Chernenko, E. Villa, S. Besseghini, J.M. Barandiaran, Phys. Proced. 10, 94 (2010)CrossRefGoogle Scholar
  15. [15]
    H. Scherngell, A.C. Kneissl, Acta Mater. 50, 327 (2002)CrossRefGoogle Scholar
  16. [16]
    X.M. Zhang, J.M. Guilemany, J. Fernandez, M. Liu, L. Liu, Intermetallics 8, 703 (2000)CrossRefGoogle Scholar
  17. [17]
    J.M. Wang, H.Y. Bai, C.B. Jiang, Y. Li, H.B. Xu, Mater. Sci. Eng. A 527, 1975 (2010)CrossRefGoogle Scholar
  18. [18]
    Y.Q. Ma, S.L. Lai, S.Y. Yang, Y. Luo, C.P. Wang, X.J. Liu, Trans. Nonferr. Met. Soc. China 21, 96 (2011)CrossRefGoogle Scholar
  19. [19]
    J.H. Sui, X. Zhang, X.H. Zheng, Z.Y. Yang, W. Cai, X.H. Tian, Scr. Mater. 68, 679 (2013)CrossRefGoogle Scholar
  20. [20]
    S. Datta, A. Bhunya, M.K. Banerjee, Mater. Sci. Eng. A A300, 291 (2001)CrossRefGoogle Scholar
  21. [21]
    H. Scherngell, A.C. Kneissl, Scr. Mater. 39, 205 (1998)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations