Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 456–464 | Cite as

A Synergistic Acceleration of Corrosion of Q235 Carbon Steel Between Magnetization and Extracellular Polymeric Substances

Article
  • 77 Downloads

Abstract

In this work, surface characterization and electrochemical measurement were employed to investigate the effects of magnetic field (MF) on the corrosion of Q235 carbon steel in a NaCl solution containing sulphate-reducing bacteria (SRB) or extracellular polymeric substances (EPS). Results demonstrated that a 150 mT MF enhanced steel corrosion in a SRB-containing NaCl solution by 202% calculated from weight loss with pitting corrosion as the main corrosion type. Either EPS or MF rendered steel corrosion, but a synergistic interaction between MF and EPS boosted up steel corrosion. This synergistic enhancement could be referred to the alteration in orientation of EPS induced by MF. The presence of higher percentage of chloride ions on the carbon steel surface manifested that MF initiated the erosion of chloride ions on the carbon steel coupon.

Keywords

Sulphate-reducing bacteria Magnetic field Extracellular polymeric substances Microbiologically influenced corrosion 

Notes

Acknowledgements

This work was financially supported by the Shenzhen Strategic Emerging Industry Development Special Fund Project (No. JCYJ20130401144744190) and the Innovation Foundation of Huazhong University of Science and Technology Innovation Institute (Nos. 2015TS150, 2015ZZGH010). We acknowledge the support of the Analytical and Testing Center of the Huazhong University of Science and Technology for SEM observation.

References

  1. [1]
    F. Liu, J. Zhang, C. Sun, Z. Yu, B. Hou, Corros. Sci. 83, 375 (2014)CrossRefGoogle Scholar
  2. [2]
    X.T. Chang, Y.S. Yin, G.H. Niu, T. Liu, S. Cheng, S.B. Sun, Acta Metall. Sin. (Engl. Lett.) 20, 334 (2007)CrossRefGoogle Scholar
  3. [3]
    D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77, 385 (2013)CrossRefGoogle Scholar
  4. [4]
    D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91, 74 (2014)CrossRefGoogle Scholar
  5. [5]
    D. Cetin, M.L. Aksu, Corros. Sci. 51, 1584 (2009)CrossRefGoogle Scholar
  6. [6]
    M. Stipanicev, F. Turcu, L. Esnault, E.W. Schweitzer, R. Kilian, R. Basseguy, Electrochim. Acta 113, 390 (2013)CrossRefGoogle Scholar
  7. [7]
    B. Zheng, Y. Zhao, W. Xue, H. Liu, Surf. Coat. Technol. 216, 100 (2013)CrossRefGoogle Scholar
  8. [8]
    T.Q. Wu, M.C. Yan, D.C. Zeng, J. Xu, C.K. Yu, C. Sun, W. Ke, Acta Metall. Sin. (Engl. Lett.) 28, 93 (2015)CrossRefGoogle Scholar
  9. [9]
    X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta Metall. Sin. (Engl. Lett.) 30, 601 (2017)CrossRefGoogle Scholar
  10. [10]
    V. Somasundaram, L. Philip, S.M. Bhallamudi, Chem. Eng. J. 171, 572 (2011)CrossRefGoogle Scholar
  11. [11]
    M.D. Ghafari, A. Bahrami, I. Rasooli, D. Arabian, F. Ghafari, Int. Biodeterior. Biodegrad. 80, 29 (2013)CrossRefGoogle Scholar
  12. [12]
    R. Stadler, W. Fuerbeth, K. Harneit, M. Grooters, M. Woellbrink, W. Sand, Electrochim. Acta 54, 91 (2008)CrossRefGoogle Scholar
  13. [13]
    A.F.F. Giacobone, S.A. Rodriguez, A.L. Burkart, R.A. Pizarro, Int. Biodeterior. Biodegrad. 65, 1161 (2011)CrossRefGoogle Scholar
  14. [14]
    W.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15, 181 (2004)CrossRefGoogle Scholar
  15. [15]
    H. Liu, H.H.P. Fang, Biotechnol. Bioeng. 80, 806 (2002)CrossRefGoogle Scholar
  16. [16]
    J.T. Jin, G.X. Wu, Z.H. Zhang, Y.T. Guan, Bioresour. Technol. 165, 162 (2014)CrossRefGoogle Scholar
  17. [17]
    Q. Bao, D. Zhang, D.D. Lv, P. Wang, Corros. Sci. 65, 405 (2012)CrossRefGoogle Scholar
  18. [18]
    J. Jajte, J. Grzegorczyk, M. Zmyslony, E. Rajkowska, Bioelectrochemistry 57, 107 (2002)CrossRefGoogle Scholar
  19. [19]
    R.R. Mohammed, M.R. Ketabchi, G. McKay, Chem. Eng. J. 243, 31 (2014)CrossRefGoogle Scholar
  20. [20]
    C. Niu, J.J. Geng, H.Q. Ren, L.L. Ding, K. Xu, W.H. Liang, Bioresour. Technol. 150, 156 (2013)CrossRefGoogle Scholar
  21. [21]
    J. Hu, C.F. Dong, X.G. Li, K. Xiao, J. Mater. Sci. Technol. 26, 355 (2010)CrossRefGoogle Scholar
  22. [22]
    Z.P. Lu, W. Yang, Corros. Sci. 50, 510 (2008)CrossRefGoogle Scholar
  23. [23]
    A. Rucinskiene, G. Bikulcius, L. Gudaviciute, E. Juzeliunas, Electrochem. Commun. 4, 86 (2002)CrossRefGoogle Scholar
  24. [24]
    R. Sueptitz, K. Tschulik, M. Uhlemann, L. Schultz, A. Gebert, Corros. Sci. 53, 3222 (2011)CrossRefGoogle Scholar
  25. [25]
    R. Sueptitz, K. Tschulik, M. Uhlemann, L. Schultz, A. Gebert, Electrochim. Acta 56, 5866 (2011)CrossRefGoogle Scholar
  26. [26]
    F. Al-Abbas, A. Kakpovbia, B. Mishra, D. Olson, J. Spear, Could non-destructive methodologies enhance the microbiologically influenced corrosion (MIC) in pipeline systems?, in The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (AIP Publishing, 2013), p. 1270Google Scholar
  27. [27]
    J. Filipic, B. Kraigher, B. Tepus, V. Kokol, I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012)CrossRefGoogle Scholar
  28. [28]
    L. Fojt, L. Strasak, V. Vetterl, J. Smarda, Bioelectrochemistry 63, 337 (2004)CrossRefGoogle Scholar
  29. [29]
    W.J. Ji, H.M. Huang, A.H. Deng, C.Y. Pan, Micron 40, 894 (2009)CrossRefGoogle Scholar
  30. [30]
    J. Novak, L. Strasak, L. Fojt, I. Slaninova, V. Vetterl, Bioelectrochemistry 70, 115 (2007)CrossRefGoogle Scholar
  31. [31]
    B.J. Zheng, K.J. Li, H.F. Liu, T.Y. Gu, Ind. Eng. Chem. Res. 53, 48 (2014)CrossRefGoogle Scholar
  32. [32]
    A. Bahaj, I. Beech, S. Campbell, P. James, F. Walsh, The effect of magnetic fields on biofilm formation by sulphate reducing bacteria and its implications in the corrosion of iron and steel, in US National Science Foundation Workshop on Biocorrosion and Biofouling, 12 May 1992Google Scholar
  33. [33]
    H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, H. Liu, Corros. Sci. 100, 484 (2015)CrossRefGoogle Scholar
  34. [34]
    Z.H. Dong, T. Liu, H.F. Liu, Biofouling 27, 487 (2011)CrossRefGoogle Scholar
  35. [35]
    H. Liu, T. Gu, Y. Lv, M. Asif, F. Xiong, G. Zhang, H. Liu, Corros. Sci. 117, 24 (2017)CrossRefGoogle Scholar
  36. [36]
    Z.H. Dong, W. Shi, H.M. Ruan, G.A. Zhang, Corros. Sci. 53, 2978 (2011)CrossRefGoogle Scholar
  37. [37]
    L. Yu, J. Duan, X. Du, Y. Huang, B. Hou, Electrochem. Commun. 26, 101 (2013)CrossRefGoogle Scholar
  38. [38]
    H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu, Corros. Sci. 102, 93 (2016)CrossRefGoogle Scholar
  39. [39]
    H. Liu, D. Xu, A.Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci. 101, 84 (2015)CrossRefGoogle Scholar
  40. [40]
    A. Omoike, J. Chorover, Biomacromolecules 5, 1219 (2004)CrossRefGoogle Scholar
  41. [41]
    V. Crupi, R. Ficarra, M. Guardo, D. Majolino, R. Stancanelli, V. Venuti, J. Pharm. Biomed. Anal. 44, 110 (2007)CrossRefGoogle Scholar
  42. [42]
    P. Smith, S. Roy, D. Swailes, S. Maxwell, D. Page, J. Lawson, Chem. Eng. Sci. 66, 5775 (2011)CrossRefGoogle Scholar
  43. [43]
    N. Numoto, K. Shimizu, K. Matsumoto, K. Miki, A. Kita, J. Cryst. Growth 367, 53 (2013)CrossRefGoogle Scholar
  44. [44]
    C.W. Zhong, N.I. Wakayama, J. Cryst. Growth 226, 327 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hong-Wei Liu
    • 1
  • Da-Ke Xu
    • 2
  • Bi-Juan Zheng
    • 1
  • Muhammad Asif
    • 1
  • Fu-Ping Xiong
    • 1
  • Guo-An Zhang
    • 1
  • Hong-Fang Liu
    • 1
  1. 1.Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations