Skip to main content
Log in

A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding (FSW) process, i.e., plunge, dwell, and travel stages. A rate-dependent Johnson–Cook constitutive model is chosen to capture elasto-plastic work deformations during FSW. Two different weld schedules (i.e., plunge rate, rotational speed, and weld speed) are validated by comparing simulated temperature profiles with experimental results. Based on this model, the influences of various welding parameters on temperatures and energy generation during the welding process are investigated. Numerical results show that maximum temperature in FSW process increases with the decrease in plunge rate, and the frictional energy increases almost linearly with respect to time for different rotational speeds. Furthermore, low rotational speeds cause inadequate temperature distribution due to low frictional and plastic dissipation energy which eventually results in weld defects. When both the weld speed and rotational speed are increased, the contribution of plastic dissipation energy increases significantly and improved weld quality can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. J.C.N.W.M. Thomas, M.G. Murch, P. Templesmith, C.J. Dawes, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8 (1991)

  2. M. Pirizadeh, T. Azdast, S.R. Ahmadi, S.M. Shishavan, A. Bagheri, Mater. Des. 54, 342 (2014)

  3. J.H. Hattel, M.R. Sonne, C.C. Tutum, Int. J. Adv. Manuf. Technol. 76, 1793 (2015)

    Article  Google Scholar 

  4. X.K. Zhu, Y.J. Chao, J. Mater. Process. Technol. 146, 263 (2004)

    Article  Google Scholar 

  5. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, Sci. Technol. Weld. Join. 8, 165 (2003)

    Article  Google Scholar 

  6. P. Prasanna, B.S. Rao, G.K.M. Rao, Int. J. Adv. Manuf. Technol. 51, 925 (2010)

    Article  Google Scholar 

  7. R. Nandan, G.G. Roy, T. Debroy, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 37A, 1247 (2006)

    Article  Google Scholar 

  8. P.A. Colegrove, H.R. Shercliff, Sci. Technol. Weld. Join. 11, 429 (2006)

    Article  Google Scholar 

  9. P. Ulysse, Int. J. Mach. Tools Manuf 42, 1549 (2002)

    Article  Google Scholar 

  10. E. Ranjbarnodeh, S. Hanke, S. Weiss, A. Fischer, Int. J. Miner. Metall. Mater. 19, 923 (2012)

    Article  Google Scholar 

  11. Y.H. Yau, A. Hussain, R.K. Lalwani, H.K. Chan, N. Hakimi, Int. J. Miner. Metall. Mater. 20, 779 (2013)

    Article  Google Scholar 

  12. S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang, J. Mater. Sci. Technol. 29, 955 (2013)

    Article  Google Scholar 

  13. X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42A, 3218 (2011)

    Article  Google Scholar 

  14. X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42A, 3229 (2011)

    Article  Google Scholar 

  15. H.W. Zhang, Z. Zhang, J.T. Chen, J. Mater. Process. Technol. 183, 62 (2007)

    Article  Google Scholar 

  16. Z. Zhang, H.W. Zhang, Sci. Technol. Weld. Join. 12, 226 (2007)

    Article  Google Scholar 

  17. Z. Zhang, H.W. Zhang, Mater. Des. 30, 900 (2009)

    Article  Google Scholar 

  18. Z. Zhang, H.W. Zhang, J. Mater. Process. Technol. 209, 241 (2009)

    Article  Google Scholar 

  19. H. Schmidt, J. Hattel, J. Wert, Model. Simul. Mater. Sci. Eng. 12, 143 (2004)

    Article  Google Scholar 

  20. G. Buffa, J. Hua, R. Shivpuri, L. Fratini, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 419, 389 (2006)

    Article  Google Scholar 

  21. S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil, T.W. Liao, Acta Metall. Sin. (Engl. Lett.) 29, 869 (2016)

    Article  Google Scholar 

  22. H.J. Aval, S. Serajzadeh, A.H. Kokabi, Int. J. Adv. Manuf. Technol. 52, 531 (2011)

    Article  Google Scholar 

  23. M. J. Lasley, MS Thesis, Brigham Young University (2004)

  24. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux, J. Mater. Process. Technol. 171, 348 (2006)

    Article  Google Scholar 

  25. M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.F. Yen, B.A. Cheeseman, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 224, 609 (2010)

    Article  Google Scholar 

  26. M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Int. J. Mach. Tools Manuf 50, 143 (2010)

    Article  Google Scholar 

  27. R. Hamilton, D. MacKenzie, H.J. Li, Eng. Comput. 27, 967 (2010)

    Article  Google Scholar 

  28. M. Awang, PhD Dissertation, West Virginia University, 57 (2007)

  29. M.W. Dewan, D.J. Huggett, T.W. Liao, M.A. Wahab, A.M. Okeil, Mater. Des. 92, 288 (2016)

    Article  Google Scholar 

  30. M.W.M. Rajiv S. Mishra, ASM Int. 309 (2007)

  31. G.R.C. Johnson, W.H., in Proceedings of the 7th International Symposium on Ballistics, 1983, p. 541

  32. ABAQUS Theroy Manual, Daasault Systemes Simulia Corp (Providence, RI, 2014)

    Google Scholar 

  33. Matweb, http://www.matweb.com/Accessed on September 14, 2016

  34. ANSYS, Mechanical APDL Technology Demonstration Guide 14.5, 435 (2012)

  35. Y.J. Chao, X. Qi, W. Tang, J. Manuf. Sci. Eng. Trans. ASME 125, 138 (2003)

    Article  Google Scholar 

  36. A. Bastier, M.H. Maitournam, K.D. Van, F. Roger, Sci. Technol. Weld. Join. 11, 278 (2006)

    Article  Google Scholar 

  37. X.G.W. Tang, J.C. McClure, L.E. Murr, A. Nunes, J. Mater. Process. Manuf. Sci. 7, 163 (1998)

    Article  Google Scholar 

  38. M. Awang, V.H. Mucino, Mater. Manuf. Process. 25, 167 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Louisiana Economic Development Assistantship (EDA) program. This work is also partially supported by NASA through the NASA-SLS Grant # NNM13AA02G. The authors would like to thank the National Center for Advanced Manufacturing (NCAM), NASA’s Michoud Assembly Facility at New Orleans-Louisiana, and NASA’s Marshall Space Flight Center for their help in providing the facility for the experimental program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Wahab.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B., Dewan, M.W., Huggett, D.J. et al. A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints. Acta Metall. Sin. (Engl. Lett.) 31, 1–18 (2018). https://doi.org/10.1007/s40195-017-0658-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0658-4

Keywords

Navigation