Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 1, pp 63–70 | Cite as

Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Asymmetric Reduction Rolling

  • Ling Wang
  • Yi-Quan Zhao
  • Hong-Mei Chen
  • Jing Zhang
  • Yan-Dong LiuEmail author
  • Yi-Nong Wang


The improvement of mechanical properties of ZK60 processed by asymmetric reduction rolling (ARR) was investigated in this paper. The grain refinement and basal texture intensity decrease were attributed to the introduction of shear stress produced by ARR process. Compared to conventional symmetrical rolled (SR) ZK60 alloys, ARRed ZK60 exhibited finer, more homogeneous grains and higher mechanical properties. The intensity of basal texture of ARRed ZK60 after annealing was lower than that of SRed ZK60 after annealing. ZK60 sheet with good combination of strength and ductility could be obtained by ARR process. The yield strength (YS) and ultimate tensile strength (UTS) of the ARRed ZK60 sheet were increased 150% and 91.3%, compared to those of SRed ZK60 sheet, from 80 to 200 MPa and from 140 to 264 MPa, respectively. Simultaneously, the elongation to failure increased by 68.75% in the ARR sheet (27%) when compared to that of the SR sheet (16%).


ZK60 ARR Microstructure Texture Mechanical properties 



This work was financially supported by the National Natural Science Foundation of China (No. 51271046).


  1. [1]
    I.J. Polmear, Mater. Sci. Technol. 10, 1 (1994)CrossRefGoogle Scholar
  2. [2]
    H.M. Chen, Q.H. Zang, H. Yu, J. Zhang, Y.X. Jin, Mater. Charact. 106, 437 (2015)CrossRefGoogle Scholar
  3. [3]
    H.M. Chen, Q.H. Zang, H. Yu, J. Zhang, J.H. Cho, Y.X. Jin, Y.K. Shi, Magn. Technol. 267–272 (2015)Google Scholar
  4. [4]
    W.L. Cheng, Q.W. Tian, R. Huo, L. Tian, S.F. Rong, China Foundry 13, 151 (2016)CrossRefGoogle Scholar
  5. [5]
    W.L. Cheng, Q.W. Tian, H. Yu, B.S. You, H.X. Wang, Mater. Des. 85, 762 (2015)CrossRefGoogle Scholar
  6. [6]
    H. Zhang, Y. Yan, J.F. Fan, W.L. Cheng, H.J. R, B.S. Xu, H.B. Dong, Mater. Sci. Eng., A 618, 540 (2014)CrossRefGoogle Scholar
  7. [7]
    H. Zhang, G.S. Huang, J.F. Fan, H.J. R, B.S. Xu, H.B. Dong, J. Alloys Compd. 615, 302 (2014)CrossRefGoogle Scholar
  8. [8]
    H. Zhang, Y. Liu, J.F. Fan, H.J. R, W.L. Cheng, B.S. Xu, H.B. Dong, J. Alloys Compd. 615, 687 (2014)CrossRefGoogle Scholar
  9. [9]
    H.M. Chen, S.B. Kang, H.S. Yu, J.H. Cho, H.W. Kim, G.H. Min, J. Mater. Alloys 476, 324 (2009)CrossRefGoogle Scholar
  10. [10]
    S.Y. Wang, L. Guo, Alan A. Luo, D.J. Li, X.Q. Zeng, Trans. Nonferrous Met. Soc. China 25, 1822 (2015)CrossRefGoogle Scholar
  11. [11]
    G.S. Wang, L.C. Li, Z.F. Yan, X. Zhang, Hot Working Technol. 46, 215 (2017)Google Scholar
  12. [12]
    F. Fereshteh-Saniee, N. Fakhar, F. Karami, R. Mahmudi, Mater. Sci. Eng., A 673, 450 (2016)CrossRefGoogle Scholar
  13. [13]
    Dmitry Orlov, George Raab, T.T. Lamark, M. Popov, Yuri Estrin, Acta Mater. 59, 375 (2011)CrossRefGoogle Scholar
  14. [14]
    B. Song, R.L. Xin, L.Y. Sun, G. Chen, Q. Liu, Mater. Sci. Eng., A 582, 68 (2013)CrossRefGoogle Scholar
  15. [15]
    R. Ma, L. Wang, Y.N. Wang, D.Z. Zhou, Mater. Sci. Eng., A 638, 190 (2015)CrossRefGoogle Scholar
  16. [16]
    M.T. Pérez-Prado, D. Valle, O.A. Ruano, Scr. Mater. 51, 1093 (2004)CrossRefGoogle Scholar
  17. [17]
    K.H. Kim, K. Okayasu, H. Fukutomi, Mater. Trans. 56, 17 (2015)CrossRefGoogle Scholar
  18. [18]
    Q.L. Jin, S.Y. Shim, S.G. Lim, Scr. Mater. 55, 843 (2006)CrossRefGoogle Scholar
  19. [19]
    X. Gong, W. Gong, S.B. Kang, J.H. Cho, Mater. Res. 18(2), 360 (2015)CrossRefGoogle Scholar
  20. [20]
    W. Xin, C.W. Zhen, H.L. Xi, W.G. Jun, W. Er-De, Trans. Nonferrous Met. Soc. China 21, 226 (2011)Google Scholar
  21. [21]
    Y. Yuan, A. Ma, X. Gou, J. Jiang, F. Lu, D. Song, Y. Zhu, Mater. Sci. Eng., A 63, 45 (2015)CrossRefGoogle Scholar
  22. [22]
    F.D. Dumitru, O.F. Higuera-Cobos, J.M. Cabrera, Mater. Sci. Eng., A 594, 32 (2014)CrossRefGoogle Scholar
  23. [23]
    J. Lin, Q. Wang, L. Peng, H.J. Roven, J. Alloys Compd. 476, 441 (2009)CrossRefGoogle Scholar
  24. [24]
    W. Ding, D. Li, Q. Wang, Q. Li, Mater. Sci. Eng., A 483–484, 228 (2008)CrossRefGoogle Scholar
  25. [25]
    L.L. Chang, Y.N. Wang, X. Zhao, M. Qi, Mater. Charact. 60, 991 (2009)CrossRefGoogle Scholar
  26. [26]
    Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, J.C. Huang, Scr. Mater. 55, 637 (2006)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ling Wang
    • 1
    • 2
  • Yi-Quan Zhao
    • 3
  • Hong-Mei Chen
    • 4
  • Jing Zhang
    • 5
  • Yan-Dong Liu
    • 1
    Email author
  • Yi-Nong Wang
    • 3
  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Yingkou Institute of TechnologyYingkouChina
  3. 3.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  4. 4.Provincial Key Lab of Advanced Welding TechnologyJiangsu University of Science and TechnologyZhenjiangChina
  5. 5.School of Metallurgy and Materials EngineeringJiangsu University of Science and TechnologyZhangjiagangChina

Personalised recommendations