Skip to main content
Log in

Performance of Chemical Vapor Deposited Boron-Doped AlN Thin Film as Thermal Interface Materials for 3-W LED: Thermal and Optical Analysis

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Boron-doped aluminum nitride (B-AlN) thin films were synthesized on Al substrates by using chemical vapor deposition method by changing the synthesis parameters and were used as thermal interface material for high power light emitting diode (LED). The B-AlN thin film-coated Al substrate was used as heat sink and studied the performance of high power LED at various driving currents. The recorded transient cooling curve was evaluated to study the rise in junction temperature (T j), total thermal resistance (R th-tot) and the substrate thermal resistance (R th-sub) of the given LED. From the results, the B-AlN thin film (prepared at process 4) interfaced LED showed low R th-tot and T j value for all driving currents and observed high difference in R th-totR th-tot = 2.2 K/W) at 700 mA when compared with the R th-tot of LED attached on bare Al substrates (LED/Al). The T j of LED was reduced considerably and observed 4.7 °C as ΔT j for the film prepared using process 4 condition when compared with LED/Al boundary condition at 700 mA. The optical performance of LED was also tested for all boundary conditions and showed improved lux values for the given LED at 700 mA where B-AlN thin film was synthesized using optimized flow of Al, B and N sources with minimized B and N content. The other optical parameters such as color correlated temperature and color rendering index were also measured and observed low difference for all boundary conditions. The observed results are suggested to use B-AlN thin film as efficient solid thin film thermal interface materials in high power LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Solving the system-level thermal management challenges of LEDs, Mentor Graphics Corp. (2011), http://old.fortronic.it/user/file/A%26VElettronica/OT02.pdf. Accessed 05 sept 2016

  2. H.C. Wang, N.E. Jewell-Larsen, A.V. Mamishev, Appl. Therm. Eng. 51, 190 (2013)

    Article  Google Scholar 

  3. S. Shanmugan, N. Teeba, D. Mutharas, Microelectron. Int. 30, 77 (2013)

    Article  Google Scholar 

  4. S. Narumanchi, M. Mihalic, K. Kelly, G. Eesley, Thermal and Thermomechanical Phenomena in Electronic Systems, 2008. In the ITHERM 2008. 11th Intersociety Conference (2008),pp. 395–404

  5. T. Brunschwiler, U. Kloter, R.J. Linderman, H. Rothuizen, B. Michel, IEEE Trans. Compon. Packag. Technol. 30, 226 (2007)

    Article  Google Scholar 

  6. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R.I. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009)

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn. Nature 413, 597 (2001)

    Article  Google Scholar 

  8. Z.C. Feng, III-Nitride Semiconductor Materials (Imperia College Press, UK, 2006), p. 428

    Book  Google Scholar 

  9. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987)

    Article  Google Scholar 

  10. T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, J. Appl. Phys. 112, 044905 (2012)

    Article  Google Scholar 

  11. P.K. Kuo, G.W. Auner, Z.L. Wu, Thin Solid Films 253, 223 (1994)

    Article  Google Scholar 

  12. M. Witthaut, R. Cremer, D. Neuschütz, Surf. Interface Anal. 30, 580 (2000)

    Article  Google Scholar 

  13. S. Shanmugan, D. Mutharasu, J. Electron. Packag. 136, 034502 (2014)

    Article  Google Scholar 

  14. S. Shanmugan, M.S. Norazlina, D. Mutharasu, Opt. Quantum Electron. 47, 1 (2014)

    Google Scholar 

  15. S. Shanmugan, D. Mutharasu, IEEE Trans. Device Mater. Rel. 14, 30 (2014)

    Article  Google Scholar 

  16. S. Shanmugan, D. Mutharasu, IEEE Trans. Electron Devices 61, 3213 (2014)

    Article  Google Scholar 

  17. B. Hahn, M. Deufel, M. Meier, M.J. Kastner, R. Blumberg, W.J. Gebhardt, J. Cryst. Growth 170, 472 (1997)

    Article  Google Scholar 

  18. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 77th edn. (CRC Press, Boca Raton 1996–1997), pp. 9–73

  19. A.C. Jones, J. Auld, S.A. Rushworth, E.W. Williams, P.W. Haycock, C.C. Tang, G.W. Critchlow, Adv. Mater. 6, 229 (1994)

    Article  Google Scholar 

  20. A.C. Jones, J. Auld, S.A. Rushworth, D.J. Houlton, Gary W. Critchlow, J. Mater. Chem. 4, 1591 (1994)

    Article  Google Scholar 

  21. E. Ken-ichi, M. Hisashi, P. Uliana, K. Yoshinao, O. Shigeo, K. Akinori, J. Cryst. Growth 298, 332 (2007)

    Article  Google Scholar 

  22. I.L. Fowler, Rev. Sci. Instrum. 34, 731 (1963)

    Article  Google Scholar 

  23. T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, J. Appl. Phys. 112, 044905 (2012)

    Article  Google Scholar 

  24. J. He, H. Zhang, Y. Zhang, Y. Zhao, X. Wang, Phys. Status Solidi A 211, 587 (2014)

    Article  Google Scholar 

  25. P. Yang, X.L. Wang, P. Li, H. Wang, L.Q. Zhang, F.W. Xie, Acta Phys. Sin. 61, 076501 (2012). (in Chinese)

    Google Scholar 

  26. R. Fallica, E. Varesi, L. Fumagalli, S. Spadoni, M. Longo, C. Wiemer, Phys. Status Solidi RRL 7, 1107 (2013)

    Article  Google Scholar 

  27. S. Shanmugan, D. Mutharasu, IEEE Trans. Electron Device 63, 4839 (2016)

    Article  Google Scholar 

  28. B.S. Siegal, Factor affecting semiconductor device thermal resistance measurements. Semiconductor Thermal and Temperature Measurement Symposium, SEMI-THERM IV., Fourth Annual IEEE, 12–18 (1988) DOI: 10.1109/SEMTHE.1988.10591

  29. A.J. Fischer, A.A. Allerman, M.H. Crawford, K.H.A. Bogart, S.R. Lee, R.J. Kaplar, W.W. Chow, S.R. Kurtz, K.W. Fullmer, J.J. Figiel, Appl. Phys. Lett. 84, 3394 (2004)

    Article  Google Scholar 

  30. N.A. Zimbovskaya, M.R. Pederson, Phys. Rep. 509, 1 (2011)

    Article  Google Scholar 

  31. R. Prasher, Proceed. IEEE 94, 1571 (2006). doi:10.1109/JPROC.2006.879796

    Article  Google Scholar 

  32. U.S. Department of Energy, LED measurement series: color rendering index and LEDs (2008), http://cool.conservation-us.org/byorg/us-doe/color_rendering_index.pdf. Accessed 17 January 2017

Download references

Acknowledgements

This work was financially supported by Collaborative Research in Engineering, Science and Technology (CREST) under Grant No. 304/PFIZIK/650601/C121. The author thanks the laboratory assistant and staff who is supporting in this work. It is acknowledged for the facilities provided by NOR lab at School of Physics for analysis and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanmugan.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugan, S., Mutharasu, D. Performance of Chemical Vapor Deposited Boron-Doped AlN Thin Film as Thermal Interface Materials for 3-W LED: Thermal and Optical Analysis. Acta Metall. Sin. (Engl. Lett.) 31, 97–104 (2018). https://doi.org/10.1007/s40195-017-0592-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0592-5

Keywords

Navigation