Skip to main content

Localized Corrosion Characteristics of Nickel Alloys: A Review

Abstract

There are a great variety of commercial nickel alloys mainly because nickel is able to dissolve a large amount of alloying elements while maintaining a single ductile austenitic phase. Nickel alloys are generally designed for and used in highly aggressive environments, for example, those where stainless steels may experience pitting corrosion or environmentally assisted cracking. While nickel alloys are generally resistant to pitting corrosion in chloride-containing environments, they may be prone to crevice corrosion attack. Addition of chromium, molybdenum and tungsten increases the localized corrosion resistance of nickel alloys. This review on the resistance to localized corrosion of nickel alloys includes specific environments such as those present in oil and gas upstream operations, in the chemical process industry and in seawater service.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. R.B. Rebak, Crystalline Alloys: Nickel, in Environmental Degradation of Advanced and Traditional Engineering Materials (London: CRC Press, 2013)

  2. Z. Szklarska-Smialowska, Pitting and Crevice Corrosion (Houston, TX, NACE, 2005)

    Google Scholar 

  3. D.C. Agarwal, J. Kloewer, Nickel Base Alloys: Corrosion Challenges in the New Millennium, CORROSION/2001, Paper No. 01325 (Houston, TX: NACE, 2001), p. 1

  4. R.M. Carranza, M.A. Rodriguez, R.B. Rebak, Corrosion 63, 480 (2007)

    Article  Google Scholar 

  5. R.M. Carranza, JOM 60, 58 (2008)

    Article  Google Scholar 

  6. S. Sosa Haudet, M.A. Rodriguez, R.M. Carranza, R.B. Rebak, Effect of Alloy Composition on the Crevice Corrosion Resistance of Nickel Alloys, CORROSION/2012, Paper No. 01455 (Houston, TX: NACE, 2012), p. 1

  7. M.A. Rodriguez, Corros. Rev. 30, 19 (2012)

    Article  Google Scholar 

  8. N.S. Zadorozne, C.M. Giordano, M.A. Rodríguez, R.M. Carranza, R.B. Rebak, Electrochim. Acta 76, 94 (2012)

    Article  Google Scholar 

  9. M. Rincon Ortiz, M.A. Rodriguez, R.M. Carranza, J. Electrochem. Soc. 159, C469 (2012)

    Article  Google Scholar 

  10. M. Rincon Ortiz, M.A. Rodríguez, R.M. Carranza, R.B. Rebak, Corros. Sci. 68, 72 (2013)

    Article  Google Scholar 

  11. M. Iannuzzi, M. Rincon Ortiz, M. Kappes, M.A. Rodriguez, R.M. Carranza, R.B. Rebak, Selecting corrosion resistant alloys for seawater applications. CORROSION/2014, Research in Progress Symposium (Houston, TX: NACE, 2014)

  12. E.C. Hornus, C.M. Giordano, M.A. Rodríguez, R.M. Carranza, R.B. Rebak, J. Electrochem. Soc. 162, C105 (2015)

    Article  Google Scholar 

  13. M. Miyagusuku, R.M. Carranza, R.B. Rebak, Corrosion 71, 574 (2015)

    Article  Google Scholar 

  14. S.J. Mulford, D. Tromans, Corrosion 44, 891 (1988)

    Article  Google Scholar 

  15. K.A. Gruss, G.A. Cragnolino, D.S. Dunn, N. Shridhar, Repassivation Potential for Localized Corrosion of Alloys 625 and C22 in Simulated Repository Environments. U.S. Nuclear Regulatory Commission (Washington, D.C.) and Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute (San Antonio,TX), 1998

  16. K. Sugahara, Y. Takizawa, Localized Corrosion Resistance of Corrosion-resistant Nickel Based Alloys in Hot Concentrated Seawater. CORROSION/1998, Paper No. 00697 (Houston, TX: NACE, 1998), p. 1

  17. C. Voigt, G. Riedel, H. Werner, M. Koehler, Mater. Corros. 49, 489 (1998)

    Article  Google Scholar 

  18. J. Birn, M. Janik-Czachor, A. Wolowik, A. Szummer, Corrosion 55, 977 (1999)

    Article  Google Scholar 

  19. E.L Hibner, L.E. Shoemaker, The Advantages of Nickel Alloys for Seawater Service. CORROSION/2000, Paper No. 00629 (Houston, TX: NACE, 2000), p. 1

  20. B.A. Kehler, G.O. Ilevbare, J.R. Scully, Corrosion 57, 1042 (2001)

    Article  Google Scholar 

  21. N. Sridhar, C.S. Brossia, D.S. Dunn, A. Anderko, Corrosion 60, 916 (2004)

    Article  Google Scholar 

  22. K. Sugahara, T. Isobe, Corrosion Resistance of the Ni-Cr-Mo-Ta Alloy (UNS N06210) in Waste Treatment Facility Simulated Environment Solutions. CORROSION/2005, Paper No. 05315 (Houston, TX: NACE, 2005), p. 1

  23. J.R. Hayes, J.J. Gray, A.W. Szmodis, C.A. Orme, Corrosion 62, 491 (2006)

    Article  Google Scholar 

  24. P.R. Rhodes, L.A. Skogsberg, R.N. Tuttle, Corrosion 63, 63 (2007)

    Article  Google Scholar 

  25. R.B. Rebak, Mechanisms of Inhibition of Crevice Corrosion in Alloy 22, paper NN8.4 in proceedings of the Materials Research Society Symposium, Vol. 985, p. 261 (2007)

  26. H. Alves, M. Schmitz-Niederau, Successful Applications of Nickel Alloys and High Alloyed Stainless Steels in Seawater Service. CORROSION/2008, Paper No. 08259 (Houston, TX: NACE, 2008), p. 1

  27. K. Sugahara, Beneficial Effects of Tantalum in Ni-Cr-Mo-Ta Alloy UNS N06210 CORROSION/2008, Paper No. 08182 (Houston, TX: NACE, 2008), p. 1

  28. P. Crook, N.S. Meck, N.E. Koon, The Corrosion Characteristics of a Uniquely Versatile Nickel Alloy. CORROSION/2008, Paper No. 08190 (Houston, TX: NACE, 2008), p. 1

  29. A.K. Mishra, G.S. Frankel, Corrosion 64, 836 (2008)

    Article  Google Scholar 

  30. Z.F. Yin, W.Z. Zhao, W.Y. Lai, X.H. Zhao, Corros. Sci. 51, 1702 (2009)

    Article  Google Scholar 

  31. H. Alves, R. Behrens, L. Paul, Review of Corrosion Issues and Materials Solutions in the CPI. CORROSION/2010, Paper No. 10338 (Houston, TX: NACE, 2010), p. 1

  32. S. Rajeswari, K.S.K. Danadurai, T.M. Sridhar, S.V. Narasimhan, Corrosion 57, 465 (2011)

    Article  Google Scholar 

  33. T. Chen, X. Liu, H. John, J. Xu, J. Hawk, Effect of Aging Treatment on Pitting Corrosion Behavior of Oil-grade Nickel Base Alloy 718 in 3.5 wt% NaCl Solution. CORROSION/2012, Paper No. 01263 (Houston, TX: NACE, 2012), p. 1

  34. J.J. Debarbadillo, S.K. Mannan, JOM 64, 265 (2012)

    Article  Google Scholar 

  35. H. Sarmiento Klapper, R. Baessler, K. Weidauer, D. Stuerzbecher, Corrosion 68, 16001-1 (2012)

    Article  Google Scholar 

  36. A.K. Mishra, D.W. Shoesmith, Electrochim. Acta 102, 328 (2013)

    Article  Google Scholar 

  37. S. Schmigalla, A. Heyn, Mater. Corros. 64, 700 (2013)

    Article  Google Scholar 

  38. A.K. Mishra, D.W. Shoesmith, Corrosion 70, 721 (2014)

    Article  Google Scholar 

  39. H. Sarmiento Klapper, J. Stevens, Corrosion 70, 899 (2014)

    Article  Google Scholar 

  40. O. Golenishcheva, M. Oechsner, A. Aghajani, G. Andersohn, J. Kloewer, Influence of Delta-phase Precipitation on the Pitting Performance of UNS N07718, CORROSION/2014, Paper No. 03895 (Houston, TX: NACE, 2014), p. 1

  41. A. Mishra, D. Richesin, R.B. Rebak, Localized Corrosion Study of Ni-Cr-Mo Alloys for Oil and Gas Applications, CORROSION/2015, Paper No. 05802, (Houston, TX: NACE, 2015), p. 1

  42. A. Mishra, X. Zhang, D. Shoesmith, Corrosion 72, 356 (2016)

    Article  Google Scholar 

  43. J.R. Galvele, J. Electrochem. Soc. 123, 464 (1976)

    Article  Google Scholar 

  44. M. Speidel, Metall. Trans. 12, 779 (1981)

    Article  Google Scholar 

  45. ANSI/NACE MR0175/ISO 15156 Petroleum and natural gas industries—Materials for use in H2S-containing environments in oil and gas production, Section 6.3, (ANSI/NACE/ISO), 2009

  46. D.C. Agarwal, W.R. Herda, Mater. Corros. 48, 542 (1997)

    Article  Google Scholar 

  47. E. Hibner, S. Tassen, J.W. Skogsberg, Effect of Alloy Nickel Content vs. PRE on the Selection of Austenitic Oil Country Tubular Goods for Sour Gas Service. CORROSION/1998, Paper No. 106 (Houston, TX: NACE, 1998), p. 1

  48. ASTM G48—Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, (West Conshohocken, PA: ASTM International)

  49. H. Sarmiento Klapper, R. Rebak, Corrosion 73, (2017) in press

  50. J. Kolts, Alloy 718 for the Oil and Gas Industry, Superalloy 718-Metallurgy and Applications, (The Minerals, Metals & Materials Society, 1989), p. 329

  51. TM0177—Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H 2 S Environments, (Houston, TX: NACE International)

  52. ISO 21457—Petroleum, petrochemical and natural gas industries—Materials selection and corrosion control for oil and gas production systems, (Geneva, Switzerland: International Organization for Standardization)

  53. NORSOK M-001 – Materials Selection, (Majorstuen, Norway: Norwegian Technology Center)

  54. R.B. Rebak, P. Crook, Influence of Alloying Elements, Temperature and Electrolyte Composition on the Corrosion Behavior of Nickel Based Alloys. CORROSION/2000, Paper No. 00499 (Houston, TX: NACE, 2000), p. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmuth Sarmiento Klapper.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klapper, H.S., Zadorozne, N.S. & Rebak, R.B. Localized Corrosion Characteristics of Nickel Alloys: A Review. Acta Metall. Sin. (Engl. Lett.) 30, 296–305 (2017). https://doi.org/10.1007/s40195-017-0553-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0553-z

Keywords

  • Nickel alloys
  • Localized corrosion
  • Oil and gas
  • Seawater
  • Chemical process industry