Skip to main content
Log in

Prediction for Flow Stress of 95CrMo Hollow Steel During Hot Compression

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The compressive deformation behavior of 95CrMo hypereutectic steel was studied at temperatures ranging from 800 to 1050 °C and strain rates from 0.1 to 3 s−1 on a Gleeble-3500 thermo-simulation machine. The results showed that, with the decrease in deformation temperature and increase in strain rate, the fragmented retained austenite in finer and distributed more uniformly in the ferrite matrix as a result of the inhibited recovery. The recorded flow stress suggested that the stress level decreases with increasing temperature and decreasing strain rate. Based on the classical stress–dislocation relation, the constitutive equations of flow stress determined by work-hardening and softening mechanisms were established. A comparison between the experimental and calculated values confirmed the reliability of the model, and the predictability of the model was also quantified in terms of correlation coefficients and average absolute relative errors, which were found generally above 0.99 and below 2.50%, respectively. In the whole range of strain rate, the activation energy is 419.84 kJ/mol. By further identification based on Schöck’s model and Kocks–Argon–Ashby model, the rate-controlling mechanism is found to be dislocation cross-slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Yin, L. Hua, H.J. Mao, X.H. Han, Mater. Des. 43, 393–401 (2014)

    Article  Google Scholar 

  2. T. Yan, E.L. Yu, Y.Q. Zhao, Mater. Des. 50, 574–580 (2013)

    Article  Google Scholar 

  3. K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, J. Mater. Process. Technol. 56, 908–917 (1996)

    Article  Google Scholar 

  4. H.J. McQueen, S. Yue, N.D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293–310 (1995)

    Article  Google Scholar 

  5. M.P. Phaniraj, A.K. Lahiri, J. Mater. Process. Technol. 141, 219–227 (2003)

    Article  Google Scholar 

  6. Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun. 35, 142–150 (2008)

    Article  Google Scholar 

  7. F.A. Slooff, J. Zhou, J. Duszczyk, Scr. Mater. 57, 759–762 (2007)

    Article  Google Scholar 

  8. Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci. 42, 470–477 (2008)

    Article  Google Scholar 

  9. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Mater. Sci. Eng. A 325, 112–125 (2002)

    Article  Google Scholar 

  10. D.R. Lesuer, C.K. Syn, J.D. Whittenberger, Mater. Sci. Eng., A 317, 101–107 (2001)

    Article  Google Scholar 

  11. Yu. Wei, B.S. Xie, B. Wang, S.X. Xu, J. Iron Steel Res. Int. 23, 910–916 (2016)

    Article  Google Scholar 

  12. D.L. Hong, T.H. Gu, S.G. Xu, Drill Tool and Drill Steel (Metal. Industry Press, Beijing, 2000), pp. 121–134

    Google Scholar 

  13. Z.S. Wang, W. Yu, J.Z. Xiong, J. Iron Steel Res. 1, 22–25 (2009)

    Google Scholar 

  14. N.Q. Peng, G.B. Tang, J. Yao, J. Iron Steel Res. 20, 50–56 (2013)

    Article  Google Scholar 

  15. J.G. Zhang, D.S. Sun, H.S. Shi, Mater. Sci. Eng. A 326, 20–25 (2002)

    Article  Google Scholar 

  16. A. Saha, D.K. Mondal, K. Biswas, J. Maity, Mater. Sci. Eng. A 541, 204–215 (2012)

    Article  Google Scholar 

  17. R. Ding, D. Tang, A.M. Zhao, Scr. Mater. 88, 21–24 (2014)

    Article  Google Scholar 

  18. D.W. Suh, J.Y. Cho, K.H. Oh, ISIJ Int. 42, 564–566 (2002)

    Article  Google Scholar 

  19. A. Yoshie, T. Fujita, M. Fujioka, ISIJ Int. 36, 467–473 (1996)

    Article  Google Scholar 

  20. Y.Q. Song, Z.P. Guan, P.K. Ma, Acta Mater. Sin. 42, 673–680 (2006)

    Google Scholar 

  21. D. Samantaray, S. Mandal, A.K. Bhaduri, Mater. Des. 32, 2797–2802 (2011)

    Article  Google Scholar 

  22. C. Zener, H. Hollomon, J. Appl. Phys. 15, 22–27 (1944)

    Article  Google Scholar 

  23. S.A. Krishnan, C. Phaniraj, C. Ravishankar, Int. J. Pres. Ves. Pip. 88, 501–506 (2011)

    Article  Google Scholar 

  24. F. Yin, L. Hua, H.J. Mao, Mater. Des. 55, 560–573 (2014)

    Article  Google Scholar 

  25. C.X. Yue, L.W. Zhang, S.L. Liao, Mater. Sci. Eng. 339A, 560–573 (2014)

    Google Scholar 

  26. B.S. Xie, Q.W. Cai, W. Yu, Mater. Sci. Eng. 618A, 586–595 (2014)

    Article  Google Scholar 

  27. O.D. Sherby, R.H. Klundt, A.K. Miller, Metall. Trans. 8A, 843–850 (1977)

    Article  Google Scholar 

  28. G. Frommeyer, J.A. Jimenez, Metall. Mater. Trans. 36A, 295–300 (2005)

    Article  Google Scholar 

  29. H.T. Zhao, G.Q. Liu, X. Lei, Mater. Sci. Eng. 559A, 262–267 (2013)

    Article  Google Scholar 

  30. Y.V.R.K. Prasad, K.P. Rao, M. Gupta, Compos. Sci. Technol. 69, 1070–1076 (2009)

    Article  Google Scholar 

  31. G.M. Luo, J.S. Wu, J.F. Fan, Mater. Sci. Eng. 379A, 302–307 (2004)

    Article  Google Scholar 

  32. B. Walser, D.S. Oleg, Metall. Trans. 10A, 1461–1471 (1979)

    Article  Google Scholar 

  33. D.J. Seol, Y.M. Won, T.J. Yeo, ISIJ Int. 39, 91–98 (1999)

    Article  Google Scholar 

  34. A.S. Argon, M.C. Moffatt, Acta Metall. 29, 293–299 (1981)

    Article  Google Scholar 

  35. A. Laasraoui, J.J. Jonas, Metal. Trans. 22A, 1545–1558 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant Nos. 2012BAE03B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Sheng Xie or Qing-Wu Cai.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, BS., Cai, QW., Yu, W. et al. Prediction for Flow Stress of 95CrMo Hollow Steel During Hot Compression. Acta Metall. Sin. (Engl. Lett.) 30, 250–260 (2017). https://doi.org/10.1007/s40195-016-0498-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0498-7

Keywords

Navigation