Skip to main content
Log in

3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A mesoscale model of plastic deformation of ferritic stainless steels (FSSs) is formulated by combining a crystal plasticity finite element model with 3D cellular automaton algorithm. The actual grain orientations of FSS cold rolling and annealing sheet have been detected by electron backscatter diffraction and selected to be assigned to the polycrystal model. The simulation results have been validated by comparing the calculated true stress–strain response with the experimental one. For the lack of considering the interactions of dislocations with impurities, there are no upper and lower yield points in the simulation stress–strain curves. However, the calculated yield strength and the stress–strain response after yielding agree well with the real material. The local stress and strain fields show inhomogeneous at mesoscale. The plastic deformations of the grains with typical orientations have been characterized. The analysis reveals that the grains with α fiber texture show higher thickness reduction ratio as compared to others. The deformation behaviors of the grains in polycrystal are not only related to the orientations but also to the interactions from adjacent grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng., R 65, 39 (2009)

    Article  Google Scholar 

  2. T. Shiokawa, Y. Yazawa, S. Okada, JFE Technical Report 45 (2008)

  3. H.T. Yan, H.Y. Bi, X. Li, Z. Xu, Mater. Charact. 60, 65 (2009)

    Article  Google Scholar 

  4. X. Li, J. Shu, L. Chen, H. Bi, Acta Metall. Sin. (Engl. Lett.) 27, 501 (2014)

    Article  Google Scholar 

  5. H.J. Shin, J.K. An, S. Park, D.N. Lee, Acta Mater. 51, 4693 (2003)

    Article  Google Scholar 

  6. C. Zhang, L.W. Zhang, Z.Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29, 561 (2016)

    Article  Google Scholar 

  7. M. Brochu, T. Yokota, S. Satoh, ISIJ Int. 37, 872 (1997)

    Article  Google Scholar 

  8. Y. Yazawa, M. Muraki, Y. Kato, O. Furukimi, ISIJ Int. 43, 1647 (2003)

    Article  Google Scholar 

  9. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58, 1152 (2010)

    Article  Google Scholar 

  10. S.H. Choi, D.W. Kim, B.S. Seong, A.D. Rollett, Int. J. Plast 27, 1702 (2011)

    Article  Google Scholar 

  11. A. Alankar, D.P. Field, D. Raabe, Int. J. Plast 52, 18 (2014)

    Article  Google Scholar 

  12. S.D. Chen, X.H. Liu, L.Z. Liu, Acta Metall. Sin. (Engl. Lett.) 28, 1024 (2015)

    Article  Google Scholar 

  13. S.H. Zhang, S.F. Chen, Y. Ma, H.W. Song, M. Cheng, Acta Metall. Sin. (Engl. Lett.) 28, 1452 (2015)

    Article  Google Scholar 

  14. A.K. Kanjarla, P. Van Houtte, L. Delannay, Int. J. Plast 26, 1220 (2010)

    Article  Google Scholar 

  15. H.C. Chao, Trans. ASM 60, 37 (1967)

    Google Scholar 

  16. H. Takechi, H. Kato, T. Sunami, T. Nakayama, Fall Mett Jpn Inst Metals 31, 717 (1967)

    Google Scholar 

  17. R.N. Wright, Metall. Trans. 3, 83 (1972)

    Article  Google Scholar 

  18. P.D. Wu, D.J. Lloyd, Y. Huang, Mater. Sci. Eng., A 427, 241 (2006)

    Article  Google Scholar 

  19. P.D. Wu, H. Jin, Y. Shi, D.J. Lloyd, Mater. Sci. Eng., A 423, 300 (2006)

    Article  Google Scholar 

  20. I. Tikhovskiy, D. Raabe, F. Roters, Scr. Mater. 54, 1537 (2006)

    Article  Google Scholar 

  21. D. Raabe, Y. Wang, F. Roters: ‘Crystal Plasticity Simulation Study on the Influence of Texture on Earing in Steel’, 3 Computational Microstructure Evolution in Steels Papers from a Symposium of the Materials Science and Technology 2004 Meeting, September 26–30, 2005, Elsevier, p. 221

  22. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, M. Knezevic, Comput. Methods Appl. Mech. Eng. 295, 396 (2015)

    Article  Google Scholar 

  23. H. Yang, C. Wu, H. Li, X. Fan, Sci. China Technol. Sci. 54, 2107 (2011)

    Article  Google Scholar 

  24. L. Sieradzki, L. Madej, Comput. Mater. Sci. 67, 156 (2013)

    Article  Google Scholar 

  25. Y.S. Choi, M.A. Groeber, P.A. Shade, T.J. Turner, J.C. Schuren, D.M. Dimiduk, M.D. Uchic, A.D. Rollett, Metall. Mater. Trans. A 45, 6352 (2014)

    Article  Google Scholar 

  26. V.T. Phan, T.D. Nguyen, Q.H. Bui, G. Dirras, Int. J. Eng. Sci. 94, 212 (2015)

    Article  Google Scholar 

  27. D. Pierce, R.J. Asaro, A. Needleman, Acta Mater. 30, 1087 (1982)

    Article  Google Scholar 

  28. T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Modell. Simul. Mater. Sci. Eng. 16, 1 (2008)

    Article  Google Scholar 

  29. A. Siddiq, S. Schmauder, J. Comput. Appl. Mechanics 7, 1 (2006)

    Google Scholar 

  30. Z.Y. Liu, F. Gao, L.Z. Jiang, G.D. Wang, Mater. Sci. Eng., A 527, 3800 (2010)

    Article  Google Scholar 

  31. A.S. Keh, Phil. Mag. 12, 9 (1965)

    Article  Google Scholar 

  32. A. Oatra, T. Zhu, D.L. McDowell, Int. J. Plast 59, 1 (2014)

    Article  Google Scholar 

  33. H. Lim, L.M. Hale, J.A. Zimmerman, C.C. Battaile, C.R. Weinberger, Int. J. Plast 73, 100 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51604058), the Fundamental Research Funds for the Central Universities of China, the Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2015120, the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, LW., Shen, WF. et al. 3D Crystal Plasticity Finite Element Modeling of the Tensile Deformation of Polycrystalline Ferritic Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 30, 79–88 (2017). https://doi.org/10.1007/s40195-016-0488-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0488-9

Keywords

Navigation