Skip to main content

Advertisement

Log in

Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

To alleviate the bio-inert of Ti alloys as hard tissue implants, Ti–35Nb–7Zr–xCPP (calcium pyrophosphate, x = 5, 10, 15, 20 wt%) composites were prepared by mechanical alloying (MA) and following spark plasma sintering (SPS). Mechanical behaviours and in vitro bioactivity of these composites were investigated systematically. Results showed that the composites consisted of β-Ti matrix, α-Ti, and metal–ceramic phases such as CaO, CaTiO3, CaZrO3, and Ti x P y . With increasing CPP content, the composites had higher strength (over 1500 MPa) and higher elastic modulus, but suffered almost zero plastic deformation together with lower relative density. When the CPP contents were 5 and 10 wt%, the compressive elastic moduli were 44 and 48 GPa, respectively, which were close to those of natural bones. However, the compressive elastic modulus of the composites increased significantly when CPP contents exceed 10 wt%, thus deteriorating the mechanical compatibility of the composites owing to more α-Ti and metal–ceramic phases. Besides, the surface of Ti–35Nb–7Zr–10CPP composite was deposited as a homogeneous apatite layer during soaking in simulated body fluid (SBF). It indicates a good bioactivity between the implant materials and living bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, J. Dutta Majumdar, Scr. Mater. 59, 239 (2008)

    Article  Google Scholar 

  2. M. Long, H.J. Rack, Biomaterials 19, 1621 (1998)

    Article  Google Scholar 

  3. B.Q. Li, X. Lu, Acta Metall. Sin. (Engl. Lett.) 27, 338 (2014)

    Article  Google Scholar 

  4. Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, Mater. Sci. Eng., A 213, 138 (1996)

    Article  Google Scholar 

  5. Z.M. Li, B.L. Zheng, Y.T. Wang, T. Topping, Y.Z. Zhou, R.Z. Valiev, A.D. Shan, E.J. Lavernia, J. Mater. Sci. 49, 6656 (2014)

    Article  Google Scholar 

  6. A.L.R. Ribeiro, R.C. Junior, F.F. Cardoso, R.B. Fernandes Filho, L.G. Vaz, J. Mater. Sci. Mater. Med. 20, 1629 (2009)

    Article  Google Scholar 

  7. V.A.R. Henriques, E.T. Galvani, S.L.G. Petroni, M.S.M. Paula, T.G. Lemos, J. Mater. Sci. 45, 5844 (2010)

    Article  Google Scholar 

  8. A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, S. Yamaguchi, T. Kizuki, T. Matsushita, M. Niinomi, T. Kokubo, T. Nakamura, Acta Biomater. 7, 1379 (2011)

    Article  Google Scholar 

  9. M.A. Baker, S.L. Assis, O.Z. Higa, I. Costa, Acta Biomater. 5, 63 (2009)

    Article  Google Scholar 

  10. J.M. Chaves, O. Florêncio, P.S. Silva Jr., P.W.B. Marques, S.G. Schneider, J. Alloys Compd. 616, 420 (2014)

    Article  Google Scholar 

  11. K.D. Woo, S.H. Park, J.Y. Kim, S.M. Kim, M.H. Lee, Korean J. Mater. Res. 22, 150 (2012)

    Article  Google Scholar 

  12. P.J. Li, I. Kangasniemi, K. de Groot, T. Kokubo, J. Am. Ceram. Soc. 77, 1307 (1994)

    Article  Google Scholar 

  13. X.P. Wang, Y.Y. Chen, L.J. Xu, S.L. Xiao, F.T. Kong, K.D. Woo, J. Mech. Behav. Biomed. Mater. 4, 2074 (2011)

    Article  Google Scholar 

  14. Y.M. Wang, J.Y. Huang, T. Jiao, Y.T. Zhu, A.V. Hamza, J. Mater. Sci. 42, 1751 (2007)

    Article  Google Scholar 

  15. R.A. Nogueira, L.M.C. Pinto, A.C.D. Ângelo, A.P.R.A. Claro, C.R. Grandini, Phys. Rev. B 16, 2746 (2013)

    Google Scholar 

  16. H.S. Kim, T.Y. Ra, I.D. Yeo, H.J. Bang, Y.G. Yoo, W.Y. Kim, J. Mater. Sci. Technol. 24, 33 (2008)

    Article  Google Scholar 

  17. Z. Evis, M. Usta, I. Kutbay, Mater. Chem. Phys. 110, 68 (2008)

    Article  Google Scholar 

  18. P.J. Li, J. Biomed. Mater. Res. A 66, 79 (2003)

    Article  Google Scholar 

  19. A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, M.I. Ramli, Mater. Des. 65, 1028 (2015)

    Article  Google Scholar 

  20. C.Q. Ning, Y. Zhou, Acta Biomater. 4, 1944 (2008)

    Article  Google Scholar 

  21. H.Z. Ye, X.Y. Liu, H.P. Hong, J. Mater. Sci. Technol. 29, 523 (2013)

    Article  Google Scholar 

  22. Q. Chang, H.Q. Ru, D.L. Chen, X.Y. Yue, L. Yu, C.P. Zhang, J. Mater. Sci. Technol. 27, 546 (2011)

    Article  Google Scholar 

  23. H.T. Anawati, H. Asoh, T. Ohno, M. Kubota, S. Ono, Corros. Sci. 70, 212 (2013)

    Article  Google Scholar 

  24. M. Yousefpour, A. Afshar, J.Y. Chen, X.D. Zhang, Mater. Des. 28, 2154 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31160197), the Innovation Platform Construction Project for Science and Technology, Yunnan Province (No. 2013DH012), and the Analysis and Testing Foundation of Kunming University of Science and Technology (No. 2016T20090120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qin Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZY., Zhang, L., Shan, WR. et al. Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering. Acta Metall. Sin. (Engl. Lett.) 29, 1073–1080 (2016). https://doi.org/10.1007/s40195-016-0486-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0486-y

Keywords

Navigation