Acta Metallurgica Sinica (English Letters)

, Volume 29, Issue 10, pp 928–939 | Cite as

Effect of Nb and Mo on the Microstructure, Mechanical Properties and Ductility-Dip Cracking of Ni–Cr–Fe Weld Metals

Article

Abstract

A series of Ni–Cr–Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the microstructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy (OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide (M23C6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni–Cr–Fe weld metals effectively.

Keywords

Nb Mo Laves phase Microstructure Mechanical properties 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51474203) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-XXX-2). The authors also thank the assistance provided by China First Heavy Machinery Co. Ltd. in the welding process.

References

  1. [1]
    J. Postlethwaite, R. Scoular, M. Dobbin, Corrosion 44, 199 (1988)CrossRefGoogle Scholar
  2. [2]
    H.T. Lee, T.Y. Kuo, Sci. Technol. Weld. Join. 4, 94 (1999)CrossRefGoogle Scholar
  3. [3]
    S.L. Jeng, H.T. Lee, J.Y. Huang, R.C. Kuo, Mater. Trans. 49, 1270 (2008)CrossRefGoogle Scholar
  4. [4]
    H.T. Wang, G.Z. Wang, F.Z. Xuan, C.J. Liu, S.T. Tu, Adv. Mater. Res. 509, 103 (2012)CrossRefGoogle Scholar
  5. [5]
    N. Nissley, J. Lippold, Weld. J. 82, 355 (2003)Google Scholar
  6. [6]
    K. Nishimoto, K. Saida, H. Okauchi, Sci. Technol. Weld. Join. 11, 455 (2006)CrossRefGoogle Scholar
  7. [7]
    J.C. Lippold, N. Nissley, Hot Cracking Phenomena in Eelds II (Springer, Berlin, 2008), pp. 409–425CrossRefGoogle Scholar
  8. [8]
    W.L. Mo, S.P. Lu, D.Z. Li, Y.Y. Li, Metall. Mater. Trans. A 45, 5114 (2014)CrossRefGoogle Scholar
  9. [9]
    W. Yeniscavich, Weld. J. 45, 344 (1966)Google Scholar
  10. [10]
    A. Ramirez, J. Lippold, Hot Cracking Phenomena in Welds (Springer, Berlin, 2005), pp. 19–41CrossRefGoogle Scholar
  11. [11]
    A. Ramirez, C. Garzón, Hot Cracking Phenomena in Welds II (Springer, Berlin, 2008), pp. 427–453CrossRefGoogle Scholar
  12. [12]
    N. Nissley, J. Lippold, Weld. J. 88, 131s (2009)Google Scholar
  13. [13]
    M. Collins, J. Lippold, Weld. J. 82, 288 (2003)Google Scholar
  14. [14]
    A.J. Ramirez, J.C. Lippold, Mater. Sci. Eng. A 380, 245 (2004)CrossRefGoogle Scholar
  15. [15]
    M. Collins, A. Ramirez, J. Lippold, Weld. J. New York 83, 39-S (2004)Google Scholar
  16. [16]
    A. Ramirez, J. Lippold, Mater. Sci. Eng. A 380, 245 (2004)CrossRefGoogle Scholar
  17. [17]
    K. Nishimoto, K. Saida, H. Okauchi, K. Ohta, Sci. Technol. Weld. Join. 11, 471 (2006)CrossRefGoogle Scholar
  18. [18]
    W.L. Mo, S.P. Lu, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 29, 458 (2013)CrossRefGoogle Scholar
  19. [19]
    A.J. Ramirez, J.W. Sowards, J.C. Lippold, J. Mater. Process. Technol. 179, 212 (2006)CrossRefGoogle Scholar
  20. [20]
    S. Kiser, R. Zhang, B. Baker, A new welding material for improved resistance to ductility dip cracking, in: ASM Proceedings of International Conference on Trends in welding research, Pine Mountain, GA, USA, Citeseer, 2008Google Scholar
  21. [21]
    S.L. McCracken, B.T. Alexandrov, J.C. Lippold, A.T. Hope, Hot cracking study of high chromium nickel-base weld filler metal 52MSS (ERNiCrFe-13) for nuclear applications, in: ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, American Society of Mechanical Engineers, 2010Google Scholar
  22. [22]
    K. Yushchenko, D.V. Savchenko, M.N. Chervyakov, M.A. Zvyagintseva, E. Guyot, Weld. World 55, 28 (2011)CrossRefGoogle Scholar
  23. [23]
    W.L. Mo, X. Zhang, S.P. Lu, D.Z. Li, Y.Y. Li, Acta Metall. Sin. 51, 230 (2015). (in Chinese) Google Scholar
  24. [24]
    Z. Pu, China Molybden. Ind. 5, 001 (2004)Google Scholar
  25. [25]
    S.L. Jeng, H.T. Lee, W.P. Rehbach, T.Y. Kuo, T.E. Weirich, J.P. Mayer, Mater. Sci. Eng., A 397, 229 (2005)CrossRefGoogle Scholar
  26. [26]
    S.L. Jeng, Y.H. Chang, Mater. Sci. Eng. A 560, 343 (2013)CrossRefGoogle Scholar
  27. [27]
    J.N. Dupont, M.R. Notis, A.R. Marder, C.V. Robino, J.R. Michael, Metall. Mater. Trans. A 29, 2785 (1998)CrossRefGoogle Scholar
  28. [28]
    H.T. Lee, S.L. Jeng, T.Y. Kuo, Metall. Mater. Trans. A 34, 1097 (2003)CrossRefGoogle Scholar
  29. [29]
    X. Di, B. Chen, Sci. Technol. Weld. Join. 20, 325 (2015)CrossRefGoogle Scholar
  30. [30]
    W.L. Mo, S.P. Lu, D.Z. Li, Y.Y. Li, Mater. Sci. Eng. A 582, 326 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xu Zhang
    • 1
    • 2
    • 3
  • Dian-Zhong Li
    • 1
  • Yi-Yi Li
    • 1
    • 3
  • Shan-Ping Lu
    • 1
    • 3
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations