Antibacterial Behavior of Laser-Ablated Copper Nanoparticles


Copper nanoparticles (Cu NPs) have been synthesized by using laser ablation method, using deionized water as main solvent. The formation of Cu NPs is confirmed by UV–visible spectrophotometer (UV–Vis), atomic force microscopy (AFM) and X-ray diffraction (XRD). Cu NPs fabricated by laser ablation have diameter in the range from 14 to 55 nm. Structural analysis revealed the face-centered cubic (fcc) crystal structure of Cu NPs. The antibacterial activity of Cu NPs has been evaluated in vitro against strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fabricated Cu NPs show considerable antibacterial activity against both bacterial strains. The bacterial activity of Cu NPs was found to depend on the microbial species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. [1]

    T. Jumaa, M. Chasib, M.K. Hamid, R. Al Haddad, Nanosci. Nanotechnol. Res. 2, 1 (2014)

    Google Scholar 

  2. [2]

    W. Yu, H. Xie, L. Chen, Y. Li, C. Zhang, Nanoscale Res. Lett. 4, 465 (2009)

    Article  Google Scholar 

  3. [3]

    K.S. Tan, K.Y. Cheong, J. Nanopart. Res. 15, 1537 (2013)

    Article  Google Scholar 

  4. [4]

    H. Hashemipour, M.E. Zadeh, R. Pourakbari, P. Rahimi, Int. J. Phys. Sci. 6, 4331 (2011)

    Google Scholar 

  5. [5]

    M.M. Miranda, C. Gellini, E. Giorgetti, J. Phys. Chem. 115, 5021 (2011)

    Article  Google Scholar 

  6. [6]

    A. Umier, S. Naveed, N. Ramzan, M.S. Rafique, Nano Brief Rep. Rev. 7, 1096 (2012)

    Google Scholar 

  7. [7]

    R. Betancourt-Galindo, P.Y. Reyes-Rodriguez, B.A. Puente-Urbina, C.A. Avila-Orta, O.S. Rodriguez-Fernandez, G. Cadenas-Pliego, R.H. Lira-Saldivar, L.A. Garcia-Cerda, J. Nanomater. 2014, 980545 (2014)

    Article  Google Scholar 

  8. [8]

    H.X. Zhang, U. Siegert, R. Liu, W.B. Cai, Nanoscale Res. Lett. 4, 705 (2009)

    Article  Google Scholar 

  9. [9]

    V. Amendola, M. Meneghetti, J. Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  10. [10]

    M. Saito, K. Yasukawa, T. Umeda, Y. Aoi, Opt. Mater. 301, 1201 (2008)

    Article  Google Scholar 

  11. [11]

    S. Shamaila, H. Wali, R. Sharif, J. Nazir, N. Zafar, Appl. Phys. Lett. 103, 153701 (2013)

    Article  Google Scholar 

  12. [12]

    R.M. Tilaki, A.I. Zad, S.M. Mahdavi, Appl. Phys. A 88, 415 (2007)

    Article  Google Scholar 

  13. [13]

    T.M. Al-Nori, J. Sci. 23, 45 (2012)

    Google Scholar 

  14. [14]

    P. Rahimi, H. Hashemipour, M.E. Zadeh, S. Ghader, Int. J. Nanosci. Nanotechnol. 6, 144 (2010)

    Google Scholar 

  15. [15]

    S. Kheybari, N. Samadi, S.V. Hosseini, A. Fazeli, M.R. Fazeli, Daru 18, 168 (2010)

    Google Scholar 

  16. [16]

    B. Duncan, C. Kim, V.M. Rotello, J. Control. Release 148, 122 (2010)

    Article  Google Scholar 

  17. [17]

    C.R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Adv. Drug Deliv. Rev. 62, 346 (2010)

    Article  Google Scholar 

  18. [18]

    M.G. Guzman, J. Dille, S. Godet, Proc. World Acad. Sci. Eng. Technol. 45, 367 (2008)

    Google Scholar 

  19. [19]

    A.D. Russell, W.B. Hogo, G.A.J. Ayliffe, Principles and Practice of Disinfection, Preservation and Sterlization, 3rd edn. (Blackwell Scientific Ltd, Oxford, 1999)

    Google Scholar 

  20. [20]

    F.R. Lourenco, T.J.A. Pinto, Brazil. J. Pharm. Sci. 47, 573 (2011)

    Google Scholar 

  21. [21]

    B.P. Rama, P.S. Prajna, P.M. Vinita, S. Pavithra, Adv. Bio. Res. 2, 52 (2011)

    Google Scholar 

  22. [22]

    G. Mishra, S.K. Verma, D. Singh, P.K. Yadawa, R.R. Yadav, Open J. Acoust. 1, 9 (2011)

    Article  Google Scholar 

  23. [23]

    L. Argueta-Figueroa, R.A. Morales-Luckie, R.J. Scougall-Vilchis, O.F. Olea-Mejía, Prog. Nat. Sci. Mater. Int. 24, 321 (2014)

    Article  Google Scholar 

  24. [24]

    A.D. Karthik, K. Geetha, J. Appl. Pharm. Sci. 3, 16 (2013)

    Google Scholar 

  25. [25]

    R. Ali Soomro, S. Hussain Sherazi, N. Memon, M.R. Shah, N.H. Kalwar, K.R. Hallam, A. Shah, Adv. Mater. Lett. 5, 191 (2014)

    Google Scholar 

  26. [26]

    R. Ramli, M.R. Khan, N.K. Chowdhury, M.D.H. Beg, R.M. Halim, A.A. Aziz, Z. Ibrahim, N.H. Zainal, Adv. Nanopart. 2, 358 (2013)

    Article  Google Scholar 

  27. [27]

    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003 (2012)

    Article  Google Scholar 

  28. [28]

    K. Giannousi, K. Lafazanis, J. Arvanitidis, A. Pantazaki, S.D. Dendrinou, J. Inorg. Biochem. 133, 24 (2014)

    Article  Google Scholar 

  29. [29]

    C.P. Jeffrey, Alcamo’s Fundamentals of Microbiology, 9th edn. (Jones and Bartlett Publishers, Canada, 2011), pp. 57–85

    Google Scholar 

  30. [30]

    S. Malathi, V. Ramya, T. Ezhilarasu, T. Abiraman, S. Balasubramanian, J. Nanotechnol. 2014, 1 (2014)

    Google Scholar 

  31. [31]

    K.S. Khashan, G.M. Sulaiman, F.A. Abdul Ameer, Arab. J. Sci. Eng. 5, 1 (2015)

    Google Scholar 

  32. [32]

    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rehman, Mater. Lett. 71, 114 (2012)

    Article  Google Scholar 

  33. [33]

    K. Yoon, J.H. Byeon, J. Park, J. Hwang, Sci. Total Environ. 373, 572 (2007)

    Article  Google Scholar 

  34. [34]

    J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid State Chem. 147, 516 (1999)

    Article  Google Scholar 

  35. [35]

    J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Acta Biomater. 4, 707 (2008)

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the Physics Department of University of Engineering and Technology, Lahore, Physics Department of COMSATS, Lahore, and Chemistry Department of Forman Christian College, A Charted University, Lahore, for accomplishing the AFM and XRD and UV–visible spectrophotometer analysis of the synthesized nanoparticles, respectively. Also the authors are grateful to Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan, for the assistance in antibacterial studies.

Author information



Corresponding author

Correspondence to Hina Khalid.

Additional information

Available online at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalid, H., Shamaila, S., Zafar, N. et al. Antibacterial Behavior of Laser-Ablated Copper Nanoparticles. Acta Metall. Sin. (Engl. Lett.) 29, 748–754 (2016).

Download citation


  • Laser-ablated nanoparticles
  • UV–visible spectrophotometer
  • Atomic force microscopy (AFM)
  • Escherichia coli
  • Staphylococcus aureus