Skip to main content
Log in

Synthesis and Characterization of the Antibacterial Activity of Zinc Oxide Nanoparticles against Salmonella typhi

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Metal oxides can be used as a series of new and effective anti-bacterial agents. In this study, four concentrations of ZnO nanoparticles (0.2, 0.5, 0.7 and 1.0 mol/L) were synthesized using a low-temperature sol–gel method annealed at 400 and 550 °C. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). XRD results show the hexagonal wurtzite structure of the nanoparticles with the grain size in the range of 38–43 nm. TEM micrographs exhibit a polyhedral form of the synthesized nanoparticles. The antimicrobial activity of different concentrations of nanoparticles against Salmonella typhi PTCC 1609 was determined by disk diffusion and agar dilution method at five concentrations of 10, 5, 2.5, 1.25 and 0.625 mg/mL. Analysis shows that the prepared ZnO nanoparticles have a very effective antimicrobial activity against Salmonella typhi. This activity increases by reducing the size of nanoparticles and increasing their content in the bacterial growth medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan, S. Kannan, Process. Biochem. 49, 160 (2014)

    Article  Google Scholar 

  2. N. Duran, P.D. Marcato, R.D. Conti, O.L. Alves, F.T.M. Costa, M. Brocchi, J. Braz. Chem. Soc. 21, 949 (2010)

    Article  Google Scholar 

  3. K.S. Babu, V. Narayanan, Chem. Sci. Trans. 2, S33 (2013)

    Google Scholar 

  4. B.S. Reddy, S.V. Reddy, N.K. Reddy, J.P. Kumari, Res. J. Mater. Sci. 1, 11 (2013)

    Google Scholar 

  5. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano. Lett. 3, 1 (2013)

    Article  Google Scholar 

  6. A. Akbar, A.K. Anal, Food Control 38, 88 (2014)

    Article  Google Scholar 

  7. S. Talam, S.R. Karumuri, N. Gunnam, ISRN Nanotechnol. 2012, 1 (2012)

    Article  Google Scholar 

  8. J. Yu, M. Baek, H.E. Chung, S.J. Choi, J. Phys: Conf. Ser. 304, 012044 (2011)

    Google Scholar 

  9. Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin, Biomed. Opt. Express 2, 3321 (2011)

    Article  Google Scholar 

  10. K.G. Chandrappa, V.T. Venkatesha, Nano-Micro Lett. 4, 14 (2012)

    Article  Google Scholar 

  11. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  12. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Langmuir 27, 4020 (2011)

    Article  Google Scholar 

  13. J. Vidic, S. Stankic, F. Haque, D. Ciric, R.L. Goffic, A. Vidy, J. Jupille, B. Delmas, J. Nanopart. Res. 15, 1595 (2013)

    Article  Google Scholar 

  14. S. Azizi, M. Ahmad, M. Mahdavi, S. Abdolmohammadi, Preparation. Bioresources 8, 1841 (2013)

    Article  Google Scholar 

  15. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Appl. Environ. Microbiol. 77, 2325 (2011)

    Article  Google Scholar 

  16. W. Jiang, H. Mashayekhi, B. Xing, Environ. Pollut. 157, 1619 (2009)

    Article  Google Scholar 

  17. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003 (2012)

    Article  Google Scholar 

  18. A.A. Tayel, W.S. EL-Tras, S.H. Moussa, A.F. El-Baz, H. Mahrous, M.F. Salem, L. Brimer, J. Food Saf. 31, 211 (2011)

    Article  Google Scholar 

  19. B.H. Soni, M.P. Deshpande, S.V. Bhatt, S.H. Chaki, H. Kaheria, Arch. Appl. Sci. Res. 3, 173 (2011)

    Google Scholar 

  20. C. Wang, L.L. Liu, A.T. Zhang, P. Xie, J.J. Lu, X.T. Zou, Afr. J. Biotechnol. 11, 10248 (2012)

    Article  Google Scholar 

  21. M. Saadat, S.R. Mohammadi, M. Yadegari, M. Eskandari, R. Khavari-nejad, J. Jahrom, Univ. Med. Sci. 10, 11 (2012)

    Google Scholar 

  22. M. Ataeefard, F. Mirjalili, Compos. Part B-Eng. 51, 92 (2013)

    Article  Google Scholar 

  23. F. Arabi, M. Imandar, M. Negahdary, M. Imandar, M.T. Noughabi, H. Akbaridastjerdi, M. Fazilati, Ann. Biol. Res. 3, 3679 (2012)

    Google Scholar 

  24. I.A. Farbun, I.V. Romanova, S.A. Kirillov, J. Sol–Gel Sci. Technol. 68, 411 (2013)

    Article  Google Scholar 

  25. X.L. Zhang, V.T. Jeza, Q. Pan, Cell. Mol. Immunol. 5, 91 (2008)

    Article  Google Scholar 

  26. A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Truck, Am. J. Clin. Pathol. 45, 493 (1966)

    Google Scholar 

  27. M.A. Wikler, Approved Standard (PA, National Committee for Clinical Laboratory Standards (NCCLS), 2000)

    Google Scholar 

  28. B.D. Cullity, Elements of X–ray Diffraction (Reading, MA, Addison-esley, 1978), p. 102

    Google Scholar 

  29. H. Kose, A.O. Aydin, H. Akbulut, Acta Phys. Pol. A 125, 345 (2014)

    Article  Google Scholar 

  30. A.A. Ziabari, A.H.R. Sheikhani, R.V. Nezafat, K.M. Haghighidoust, J. Appl. Phys. 117, 135303 (2015)

    Article  Google Scholar 

  31. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266 (2013)

    Article  Google Scholar 

  32. M. Baek, M.K. Kim, H.J. Cho, J.A. Lee, J. Yu, H.E. Chung, S.J. Choi, JPCS 304, 012044 (2011)

    Google Scholar 

  33. M.Y. Jehad, N.D. Enas, JHS 2, 38 (2012)

    Google Scholar 

  34. S. Ramamoorthy, P. Kannaiyan, M. Moturi, Ind. J. Fish. 60, 107 (2013)

    Google Scholar 

  35. J. Lellouche, A. Friedman, A. Gedanken, E. Banin, Int. J. Nanomed. 7, 5611 (2012)

    Google Scholar 

  36. R. Rajendran, C. Balakumar, H.A.M. Ahammed, S. Jayakumar, K. Vaideki, E.M. Rajesh, IJEST 2, 2850 (2010)

    Google Scholar 

  37. Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, Materials 5, 2850 (2012)

    Article  Google Scholar 

  38. A.A. Ziabari, S. Bahrekazemi, Optoelectro. Adv. Mat. 8, 230 (2014)

    Google Scholar 

  39. A. Manke, L. Wang, Y. Rojanasakul, Biomed. Res. Int. 2013, 1 (2013)

    Article  Google Scholar 

  40. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30, 499 (2012)

    Article  Google Scholar 

  41. G. Singh, E.M. Joyce, J. Beddow, T.J. Mason, World J. Microbiol. Biotechnol. 2, 106 (2012)

    Google Scholar 

  42. Z. Emami-Karvani, P. Chehrazi, Afr. J. Microbiol. Res. 5, 1368 (2011)

    Google Scholar 

  43. Y.Y. Kao, Y.U. Chen, T.J. Cheng, Y.M. Chiung, P.S. Liu, Toxicol. Sci. 125, 462 (2011)

    Article  Google Scholar 

  44. P. Hosseinkhani, A.M. Zand, S. Imani, M. Rezayi, S.R. Zarchi, Int. J. Nano. Dim. 1, 279 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdolahzadeh Ziabari.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraat, R., Ziabari, A.A., Issazadeh, K. et al. Synthesis and Characterization of the Antibacterial Activity of Zinc Oxide Nanoparticles against Salmonella typhi . Acta Metall. Sin. (Engl. Lett.) 29, 601–608 (2016). https://doi.org/10.1007/s40195-016-0439-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0439-5

Keywords

Navigation