Skip to main content
Log in

Effect of Annealing on the Microstructure and Properties of In-situ Cu–Nb Microcomposite Wires

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of annealing on microstructure, magnetoresistance, and hardness of an in situ Cu–Nb microcomposite wire have been investigated. Neither changes in microstructure nor hardness were found until 500 °C. Particularly, microstructural change within the Nb films was observed in the annealed samples. The room-temperature magnetoresistivity was almost negligible, while magnetoresistivity at −196 °C increased with magnetic field. At temperature above 500 °C, recovery and recrystallization occurred, and both the resistance and hardness decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.R.Z. Sandim, M.J.R. Sandim, H.H. Bernardi, J.F.C. Lins, D. Raabe, Scr. Mater. 51, 1099 (2004)

    Article  Google Scholar 

  2. L. Thilly, P.O. Renault, V. Vidal, F. Lecouturier, S. Van Petegem, U. Stuhr, H. Van Swygenhoven, Appl. Phys. Lett. 88, 191906/191901 (2006)

  3. D. Dew-Hughes, P.G. Quincey, P.L. Upadhyay, Mater. Sci. Technol. 3, 936 (1987)

    Article  Google Scholar 

  4. Y. Choi, T.W. Lim, S.I. Hong, Acta Metall. Sin. (Engl. Lett.) 15, 154 (2002)

    Google Scholar 

  5. B. Zhao, F. Zeng, D.M. Li, F. Pan, Acta Metall. Sin. (Engl. Lett.) 16, 266 (2003)

    Google Scholar 

  6. B. Krevet, W. Schauer, J. Appl. Phys. 47, 3656 (1976)

    Article  Google Scholar 

  7. M. Kohler, Ann. Phys. 428, 211 (1938)

    Article  Google Scholar 

  8. M.J.R. Sandim, H.R.Z. Sandim, H.H. Bernardi, C.Y. Shigue, M.G. das Virgens, L. Ghivelder, S. Awaji, K. Watanabe, G. Iwaki, Supercond. Sci. Technol. 18, 35 (2005)

    Article  Google Scholar 

  9. G. Badinier, C.W. Sinclair, S. Allain, O. Bouaziz, Mater. Sci. Eng. A 597, 10 (2014)

    Article  Google Scholar 

  10. G. Sharma, R.V. Ramanujan, G.P. Tiwar, Acta Mater. 48, 875 (2000)

    Article  Google Scholar 

  11. F. Heringhaus, D. Raabe, G. Gottstein, Acta Metall. Mater. 43, 1467 (1995)

    Article  Google Scholar 

  12. M.J.R. Sandim, H.R.Z. Sandim, C.Y. Shigue, M. Filgueira, L. Ghivelder, Supercond. Sci. Technol. 16, 307 (2003)

    Article  Google Scholar 

  13. N. Sallez, X. Boulnat, A. Borbély, J.L. Béchade, D. Fabrègue, M. Perez, Y. de Carlan, L. Hennet, C. Mocuta, D. Thiaudière, Y. Bréchet, Acta Mater. 87, 377 (2015)

    Article  Google Scholar 

  14. A.H. Eslami, S.M. Zebarjad, M.M. Moshksar, Mater. Sci. Technol. 29, 1000 (2013)

    Article  Google Scholar 

  15. J.D. Verhoeven, H.L. Downing, L.S. Chumbley, E.D. Gibson, J. Appl. Phys. 65, 1293 (1989)

    Article  Google Scholar 

  16. D. Raabe, Comput. Mater. Sci. 3, 402 (1995)

    Article  Google Scholar 

  17. S.I. Hong, M.A. Hill, Scr. Mater. 44, 2509 (2001)

    Article  Google Scholar 

  18. M.J.R. Sandim, H.R.Z. Sandim, D. Stamopoulos, R.A. Renzetti, M.G. das Virgens, L. Ghivelder, IEEE Trans. Appl. Supercond. 16, 1692 (2006)

    Article  Google Scholar 

  19. E. Botcharova, J. Freudenberger, L. Schultz, Acta Mater. 54, 3333 (2006)

    Article  Google Scholar 

  20. L. Deng, K. Han, K.T. Hartwig, T.M. Siegrist, L. Dong, Z. Sun, X. Yang, Q. Liu, J. Alloys Compd. 602, 331 (2014)

    Article  Google Scholar 

  21. V.I. Pantsyrnyi, IEEET Appl. Supercond. 12, 1189 (2002)

    Article  Google Scholar 

  22. X. Zuo, K. Han, C. Zhao, R. Niu, E. Wang, Mater. Sci. Eng. A 619, 319 (2014)

    Article  Google Scholar 

  23. J. Freudenberger, N. Kozlova, A. Gaganov, L. Schultz, H. Witte, H. Jones, Cryogenics 46, 724 (2006)

    Article  Google Scholar 

  24. J.W. Stout, R.E. Barieau, J. Am. Chem. Soc. 61, 238 (1939)

    Article  Google Scholar 

  25. W. Singer, A. Ermakov, X. Singer, TESLA Technology Collaboration Report [2010-02-29]. https://flash.desy.de/sites2009/site_vuvfel/content/e403/e1644/e87452/e61440/infoboxContent61442/TTC-Report2010-02.pdf

  26. P. Jongenburger, Acta Metall. 9, 985 (1961)

    Article  Google Scholar 

  27. F.R. Fickett, Phys. Rev. B 3, 1941 (1971)

    Article  Google Scholar 

  28. M.G. Benz, J. Appl. Phys. 40, 2003 (1969)

    Article  Google Scholar 

  29. W. Nick, C. Schmidt, IEEE Trans. Magn. 17, 217 (1981)

    Article  Google Scholar 

  30. A. Misra, L. Thilly, Mater. Res. Soc. Bull. 35, 1 (2010)

    Google Scholar 

  31. M. Tiryakioğlu, J.S. Robinson, M.A. Salazar-Guapuriche, Y.Y. Zhao, P.D. Eason, Mater. Sci. Eng. A 631, 196 (2015)

    Article  Google Scholar 

  32. W.A. Spitzig, A.R. Pelton, F.C. Laabs, Acta Metall. 35, 2427 (1987)

    Article  Google Scholar 

  33. A. Misra, R.G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004)

    Article  Google Scholar 

  34. L. Qu, E. Wang, X. Zuo, L. Zhang, J. He, Mater. Sci. Eng. A 528, 2532 (2011)

    Article  Google Scholar 

  35. T.H. Courtney, J.C.M. Kampe, Acta Metall. 37, 1747 (1989)

    Article  Google Scholar 

  36. Y. Sakamoto, H. Tanaka, F. Sakamoto, F.A. Lewis, X.Q. Tong, Int. J. Hydrogen Energy 20(1), 35 (1995)

    Article  Google Scholar 

  37. R.P. Marshall, Acta Metall. 9, 958 (1961)

    Article  Google Scholar 

  38. D. Mattissen, D. Raabe, F. Heringhaus, Acta Mater. 47, 1627 (1999)

    Article  Google Scholar 

  39. E.H. Ekiz, T.G. Lach, R.S. Averback, N.A. Mara, I.J. Beyerlein, M. Pouryazdan, H. Hahn, P. Bellon, Acta Mater. 72, 178 (2014)

    Article  Google Scholar 

  40. U. Hangen, D. Raabe, Phys. Status Solidi A 147, 515 (1995)

    Article  Google Scholar 

  41. P.W. Voorhees, Annu. Rev. Mater. Sci. 22, 197 (1992)

    Article  Google Scholar 

  42. L. Deng, K. Han, B. Wang, X. Yang, Q. Liu, Acta Mater. 101, 181 (2015)

    Article  Google Scholar 

  43. J.B. Dubois, L. Thilly, P.O. Renault, F. Lecouturier, M. Di Michiel, Acta Mater. 58, 6504 (2010)

    Article  Google Scholar 

  44. F. Heringhaus, Ph.D. Dissertation, Rheinisch-Westfaelische Technische Hochschule Aachen, Germany, 1998

  45. D.A. Glocker, M.J. Skove, Phys. Rev. B 15, 608 (1977)

    Article  Google Scholar 

  46. L.P. Deng, X.F. Yang, K. Han, Z.Y. Sun, Q. Liu, Acta Metall. Sin. 50, 231 (2014). (in Chinese)

    Google Scholar 

  47. I.J. Beyerlein, M.J. Demkowicz, A. Misra, B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015)

    Article  Google Scholar 

  48. H.H. Bernardi, H.R.Z. Sandim, B. Verlinden, D. Raabe, Mater. Sci. Forum 558–559, 125 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51421001 and 51301040), the Natural Science Foundation of Fujian Province of China (No. 2016J05119), and the Science and Technology Fund from Fujian Education Department of China (Grant No. JA15072). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by US National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. The authors are grateful for the kind support from Dr. Jun Lu, Dr. Yifeng Su, Dr. Lei Qu, and Dr. Xiaowei Zuo for their great help during the tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Deng or Ke Han.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LP., Wang, BS., Xiang, HL. et al. Effect of Annealing on the Microstructure and Properties of In-situ Cu–Nb Microcomposite Wires. Acta Metall. Sin. (Engl. Lett.) 29, 668–673 (2016). https://doi.org/10.1007/s40195-016-0432-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0432-z

Keywords

Navigation