Skip to main content

Effect of Ambient Temperature on the Electrochemical Properties of La4MgNi17.5Co1.5 Hydrogen Storage Alloy

Abstract

The effect of different ambient temperatures on the electrochemical properties of La4MgNi17.5Co1.5 hydrogen storage alloy was investigated. The X-ray diffraction pattern shows that the alloy consists of LaNi5-type phase and A5B19-type (Ce5Co19 + Pr5Co19) phase. With the increase of the ambient temperature, the maximum discharge capacity of the alloy electrodes increases from 353.33 (283 K) to 379.25 mAh/g (308 K), and the cyclic stability (S 100) of the electrodes decreases from 80.19 (283 K) to 52.04% (308 K) due to the acceleration of pulverization, corrosion and oxidation at higher ambient temperature. Moreover, it is found that the increase of the temperature can accelerate the diffusion rate of hydrogen in the alloy (D) and increase the exchange current density (I 0), which are beneficial for improving the activation performance and the high-rate dischargeability (HRD) of the alloy electrodes. The activation cycles of the electrodes decrease from 4 (283 K) to 1 (308 K), and the HRD900 of the electrodes sharply increases from 66.36 (283 K) to 95.64% (308 K).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. L.H. Zhang, L.J. Zhang, Ind. Focus 1, 6 (2012). (in Chinese)

    Google Scholar 

  2. W.H. Zhu, Y. Zhu, Z. Davis, J. Bruce, Appl. Energy 106, 307 (2013)

    Article  Google Scholar 

  3. M.A. Fetcenko, S. Venkatesan, S.R. Ovshinsky, Batter. Electrochem/ 92, 141 (1992)

    Google Scholar 

  4. L. Pei, Ph.D. Dissertation, Guangdong University of Technology, 2008. (in Chinese)

  5. S.K. Zhang, Y.Q. Lei, L.X. Chen, G.Y. Shu, Y. Zhang, Q.D. Wang, G.L. Lv, Trans. Nonferrous Met. Soc. China 11, 183 (2001)

    Google Scholar 

  6. Y. Chen, H.G. Pan, R.G. Xu, S.Q. Li, L.X. Chen, C.P. Chen, Q.D. Wang, J. Alloys Compd. 293–295, 648 (1999)

    Google Scholar 

  7. Y.Q. Lei, New Energy Materials (Tianjin University Press, Tianjin, 2000), p. 44

    Google Scholar 

  8. W.C. Zhang, S.M. Han, J.S. Hao, Y. Li, T.Y. Bai, J.W. Zhang, Electrochim. Acta 54, 1383 (2009)

    Article  Google Scholar 

  9. Y.H. Zhang, Z.M. Yuan, T. Yang, Z.H. Hou, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 28, 826 (2015)

  10. L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118, 7808 (2014)

    Article  Google Scholar 

  11. Y.H. Zhang, H.T. Wang, X.P. Dong, W.G. Bu, Z.M. Yuan, G.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 27, 1088 (2014)

  12. Y. Li, Y. Tao, D.D. Ke, Y.F. Ma, S.M. Han, Appl. Surf. Sci. 357, 1714 (2015)

    Article  Google Scholar 

  13. S.M. Balogun, Z.M. Wang, H.G. Zhang, Q.R. Yao, J.Q. Deng, H.Y. Zhou, J. Alloys Compd. 579, 438 (2013)

    Article  Google Scholar 

  14. Y.H. Zhang, B.W. Li, H.P. Ren, Z.W. Wu, X.P. Dong, X.L. Wang, Rare Met. Mater. Eng. 38, 941 (2009)

    Google Scholar 

  15. G. Capurso, M. Naik, S.L. Russo, A. Maddalena, A. Saccone, F. Gastaldo, D.S. Negri, J. Alloys Compd. 580(Suppl 1), S159–S162 (2013)

    Article  Google Scholar 

  16. Y. Li, S.M. Han, Z.P. Liu, Int. J. Hydrog. Energy 35, 12858 (2010)

    Article  Google Scholar 

  17. T. Yang, T.T. Zhai, Z.M. Yuan, W.G. Bu, S. Xu, Y.H. Zhang, J. Alloys Compd. 617, 29 (2014)

    Article  Google Scholar 

  18. R.H. Tang, S. Zhou, F.M. Xiao, Y. Wang, T. Sun, Mater. Rev. 22, 48 (2015). (in Chinese)

    Google Scholar 

  19. A.Q. Deng, Y.Q. Luo, J.B. Fan, Rare Met. 44, 99 (2015). (in Chinese)

    Google Scholar 

  20. T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, J. Alloys Compd. 311, 5 (2000)

    Article  Google Scholar 

  21. Z.J. Cao, L.Z. Ouyang, L.L. Li, Y.S. Lu, H. Wang, W. Liu, D. Min, Y.W. Chen, F.M. Xiao, T. Sun, R.H. Tang, M. Zhu, Int. J. Hydrog. Energy 40, 451 (2015)

    Article  Google Scholar 

  22. L.Z. Ouyang, Z.J. Cao, L.L. Li, H. Wang, J.W. Liu, D. Min, Y.W. Chen, F.M. Xiao, R.H. Tang, M. Zhu, Int. J. Hydrog. Energy 39, 12765 (2014)

    Article  Google Scholar 

  23. Z.X. Li, W. Zhu, C. Tang, B.H. Chong, X.B. Yang, Rare Met. Mater. Eng. 44, 397 (2015). (in Chinese)

    Article  Google Scholar 

  24. L.C. Pei, S.M. Han, J.S. Wang, L. Hu, X. Zhao, B.Z. Liu, Mater. Sci. Eng. B 177, 1589 (2012)

    Article  Google Scholar 

  25. J. Zhang, G.Y. Zhou, G.R. Chen, M. Latroche, A. Percheron-Guegan, D.L. Sun, Acta Mater. 56, 5388 (2008)

    Article  Google Scholar 

  26. T.Z. Si, Q.A. Zhang, G. Pang, D.M. Liu, N. Liu, Int. J. Hydrog. Energy 34, 1483 (2009)

    Article  Google Scholar 

  27. Y.M. Zhao, S.M. Han, Y. Li, J.J. Liu, L. Zhang, S.Q. Yang, Electrochim. Acta 152, 265 (2015)

    Article  Google Scholar 

  28. Z.Y. Liu, X.L. Yan, N. Wang, Y.J. Chai, D.L. Hou, Int. J. Hydrog. Energy 36, 4370 (2011)

    Article  Google Scholar 

  29. R.V. Denys, V.A. Yartys, J. Alloys Compd. 509, S540 (2011)

    Article  Google Scholar 

  30. Y.F. Liu, H.G. Pan, W.Q. Jin, R. Li, S.Q. Li, H.W. Ge, Y.Q. Lei, Chin. J. Nonferrous Met. 14, 802 (2004). (in Chinese)

    Google Scholar 

  31. S. Li, H.Y. Zhou, W.P. Liu, H.G. Zhang, J.Q. Deng, Z.M. Wang, Rare Met. Mater. Eng. 44, 1591 (2015)

    Article  Google Scholar 

  32. Y.G. Tang, Ni/MH Storage Battery (Chemical Industry Press, Beijing, 2007), p. 132

    Google Scholar 

  33. J.J. Liu, S.M. Han, Y. Li, X. Zhao, S.Q. Yang, Y.M. Zhao, Int. J. Hydrog. Energy 40, 1116 (2015)

    Article  Google Scholar 

  34. J.B. Fan, A.Q. Deng, G.J. Xia, K.N. Qian, Y.C. Luo, Rare Met. Mater. Eng. 39, 2142 (2010)

    Google Scholar 

  35. J.J.G. Willems, Philips J. Res. 39, 54 (1984)

    Google Scholar 

  36. M. Li, L. Zhu, H.J. Wei, X.Y. Jian, Chin. J. Rare Met. 36, 236 (2012). (in Chinese)

    Google Scholar 

  37. B.Z. Liu, A.M. Li, Y.P. Fan, M.J. Hu, B.Q. Zhang, Trans. Nonferrous Met. Soc. China 22, 2730 (2012)

    Article  Google Scholar 

  38. B.P. Wang, Y.Z. Chen, Y.N. Liu, Int. J. Hydrog. Energy 37, 9082 (2012)

    Article  Google Scholar 

  39. L. Zhang, S.M. Han, Y. Li, J.J. Liu, J.L. Zhang, J.D. Wang, S.Q. Yang, Int. J. Hydrog. Energy 38, 10431 (2013)

    Article  Google Scholar 

  40. C. Iwakura, T. Oura, H. Inouse, M. Mastsuoka, Electrochim. Acta 41, 117 (1996)

    Article  Google Scholar 

  41. H.L. Chu, S.J. Qiu, Q.F. Tian, L.X. Sun, Y. Zhang, F. Xu, Y.Y. Liu, Y.N. Qi, M.Q. Fan, Int. J. Hydrog. Energy 32, 4925 (2007)

    Article  Google Scholar 

  42. Q.A. Zhang, M.H. Fan, T.Z. Si, F. Fang, D.L. Sun, L.Z. Ouyang, J. Phys. Chem. C 114, 11686 (2010)

    Article  Google Scholar 

  43. J. Gao, X.L. Yan, Z.Y. Zhao, Y.J. Chai, D.L. Hou, J. Power Sources 209, 257 (2012)

    Article  Google Scholar 

  44. Z.J. Cao, L.Z. Ouyang, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd 608, 14 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 50901036), Graduate Science and Technology Innovation Project of Jiangsu University of Science and Technology (No. YCX15S-18) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Song Wei.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wei, FS., Wei, FN. et al. Effect of Ambient Temperature on the Electrochemical Properties of La4MgNi17.5Co1.5 Hydrogen Storage Alloy. Acta Metall. Sin. (Engl. Lett.) 29, 614–618 (2016). https://doi.org/10.1007/s40195-016-0427-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0427-9

Keywords

  • Hydrogen storage alloy
  • Ambient temperature
  • A5B19 type
  • Electrochemical property