Skip to main content
Log in

A Concordant Shift Model for Flow in Bulk Metallic Glasses

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The homogeneous plastic flow in bulk metallic glasses (BMGs) must be elucidated by an appropriate atomistic mechanism. It is proposed that a so-called concordant shifting model, based on rearrangements of five-atom subclusters, can describe the plastic strain behaviour of BMGs in a temperature range from room temperature to the supercooled liquid region. To confirm the effectiveness of the atomic concordant shifting model, a comparative investigation between the vacancy/atom model and the concordant shifting model is carried out based on the estimation of the strain rate deduced from two models. Our findings suggest that the atomic concordant shifting model rather than the vacancy/atom exchange model can well predict the large strain rate in the superplasticity of BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)

    Article  Google Scholar 

  2. Y. Kawamura, T. Nakamura, A. Inoue, Scr. Mater. 39, 301 (1998)

    Article  Google Scholar 

  3. W.J. Kim, D.S. Ma, H.G. Jeong, Scr. Mater. 39, 1067 (2003)

    Article  Google Scholar 

  4. J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater. 51, 3429 (2003)

    Article  Google Scholar 

  5. B. Gun, K.J. Laws, M. Ferry, J. Non-Cryst. Solids 352, 3896 (2006)

    Article  Google Scholar 

  6. J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, C. Yan, L. Ye, B.D. Zhou, Intermtallics 13, 79 (2005)

    Article  Google Scholar 

  7. G. Wang, I. Jackson, J.D. Fitz Gerald, J. Shen, Z.H. Stachurski, J. Non-Cryst. Solids 354, 1575 (2008)

    Article  Google Scholar 

  8. G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H. Stachurski, B.D. Zhou, J. Non-Cryst. Solids 351, 209 (2005)

    Article  Google Scholar 

  9. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315, 1835 (2007)

    Article  Google Scholar 

  10. R.C. Giffkins, Scr. Metall. 7, 27 (1973)

    Article  Google Scholar 

  11. J.W. Edington, K.N. Melton, C.P. Cutler, Prog. Mater Sci. 21, 61 (1976)

    Article  Google Scholar 

  12. T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 1997), p. 240

    Book  Google Scholar 

  13. V.A. Levashov, J.R. Morris, T. Egami, Phys. Rev. Lett. 106, 115703 (2011)

    Article  Google Scholar 

  14. F. Spaepen, Acta Metall. 25, 407 (1977)

    Article  Google Scholar 

  15. H. Nakajima, T. Kojima, K. Nonaka, T. Zhang, A. Inoue, N. Nishiyama, Mater. Res. Soc. Symp. Proc. 644, L2.2.1 (2001)

  16. H. Eyring, J. Chem. Phys. 4, 283 (1936)

    Article  Google Scholar 

  17. C.Y. Lee, T.R. Welberry, Z.H. Stachurski, Acta Mater. 58, 615 (2010)

    Article  Google Scholar 

  18. J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957)

    Article  Google Scholar 

  19. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, A. Kvick, Acta Mater. 53, 1611 (2005)

    Article  Google Scholar 

  20. R. Ekambaram, P. Thamburaja, N. Nikabdullah, Mech. Mater. 40, 487 (2008)

    Article  Google Scholar 

  21. M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97, 033506 (2005)

    Article  Google Scholar 

  22. J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9, 619 (2010)

    Article  Google Scholar 

  23. A.S. Argon, Acta Metall. 27, 47 (1979)

    Article  Google Scholar 

  24. P. Thamburaja, N. Nikabdullah, Scr. Mater. 65, 751 (2011)

    Article  Google Scholar 

  25. G. Wang, N. Mattern, J. Bednarčík, R. Li, B. Zhang, J. Eckert, Acta Mater. 60, 3074 (2012)

    Article  Google Scholar 

  26. K. Trachenko, V.V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009)

    Google Scholar 

  27. W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami, Phys. Rev. Lett. 105, 205502 (2010)

    Article  Google Scholar 

  28. Z.Y. Liu, G. Wang, K.C. Chan, J.L. Ren, X.L. Bian, Y.J. Huang, X.H. Xu, D.S. Zhang, Y.L. Gao, Q.J. Zhai, J. Appl. Phys. 114, 033520 (2013)

    Article  Google Scholar 

  29. Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Nat. Commun. 5, 5823 (2014)

    Article  Google Scholar 

  30. B.A. Sun, Z.Y. Liu, Y. Yang, C.T. Liu, Appl. Phys. Lett. 105, 091904 (2014)

    Article  Google Scholar 

  31. Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat. Commun. 6, 7876 (2015)

    Article  Google Scholar 

  32. B.A. Sun, W.H. Wang, Prog. Mater Sci. 74, 211 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the helpful discussion with Dr. J.R. Griffiths of CSIRO, Australia. This work was supported by the grants from the Ministry of Science and Technology of China (No. 2015CB856800) and the National Natural Science Foundation of China (Nos. 51171098 and 51222102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Stachurski, Z.H. A Concordant Shift Model for Flow in Bulk Metallic Glasses. Acta Metall. Sin. (Engl. Lett.) 29, 134–139 (2016). https://doi.org/10.1007/s40195-016-0369-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0369-2

Keywords

Navigation