Acta Metallurgica Sinica (English Letters)

, Volume 28, Issue 10, pp 1286–1290 | Cite as

Transformation Sequence Rule of Martensite Plates and Temperature Memory Effect in Shape Memory Alloys

  • Tian-Wei Liu
  • Yan-Jun ZhengEmail author
  • Li-Shan Cui


In thermoelastic martensitic transformation, it is well established that the first martensite plate appearing upon cooling becomes the final one during reverse transformation to austenite upon heating. The results obtained from this work show that the transformation sequence of the martensite appears to be random. Newly formed martensite plates can modify the elastic strain energy level stored in the already existing martensite. Additionally, the elastic strain energy stored in newly formed martensite is not necessarily to be higher than the remaining martensite. The obtained results may assist in understanding phenomena related to partial transformation of shape memory alloys, such as temperature memory effect.


Phase transformation Shape memory alloys TEM Transformation sequence 



This research was supported by Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-06-25).


  1. [1]
    G. Airoldi, A. Corsi, G. Riva, Scr. Mater. 36, 1273 (1997)CrossRefGoogle Scholar
  2. [2]
    G. Airoldi, A. Corsi, G. Riva, Mater. Sci. Eng., A 241, 233 (1998)CrossRefGoogle Scholar
  3. [3]
    M.W.M. van der Wijst, Dissertation, TU Eindhoven, 1992Google Scholar
  4. [4]
    K. Otsuka, X. Ren, Prog. Mater Sci. 50, 511 (2005)CrossRefGoogle Scholar
  5. [5]
    D.R. Ni, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 27, 739 (2014)CrossRefGoogle Scholar
  6. [6]
    P. Wollants, J.R. Roos, L. Delaey, Prog. Mater Sci. 37, 227 (1993)CrossRefGoogle Scholar
  7. [7]
    J. Ortinh, A. Planes, Acta Metall. 36, 1873 (1988)CrossRefGoogle Scholar
  8. [8]
    H.C. Tong, C.M. Wayman, Scr. Metall. 8, 93 (1974)CrossRefGoogle Scholar
  9. [9]
    L. Porcar, P. Courtois, G. Crouigneau, J. Debray, D. Bourgault, Appl. Phys. Lett. 105, 151907 (2014)CrossRefGoogle Scholar
  10. [10]
    G. Airoldi, G. Riva, Key Eng. Mater. 48, 5 (1990)CrossRefGoogle Scholar
  11. [11]
    K. Madangopal, S. Banerjee, S. Lele, Acta Metall. Mater. 42, 1875 (1994)CrossRefGoogle Scholar
  12. [12]
    D.P. Dunne, C.M. Wayman, Metall. Trans. 4, 137 (1973)CrossRefGoogle Scholar
  13. [13]
    Y.J. Zheng, L.S. Cui, J. Schrooten, Appl. Phys. Lett. 84, 31 (2004)CrossRefGoogle Scholar
  14. [14]
    S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall. 34, 2045 (1986)CrossRefGoogle Scholar
  15. [15]
    X.L. Lu, D.X. Su, F. Chen, W.L. Liu, Y.G. Shi, Y.X. Tong, L. Li, Acta Metall. Sin. (Engl. Lett.) 28, 243 (2015)CrossRefGoogle Scholar
  16. [16]
    T. Tadaki, T. Kakeshita, K. Shimizu, J. Phys. 43, 191 (1982)Google Scholar
  17. [17]
    Y.J. Zheng, J.T. Li, L.S. Cui, Mater. Lett. 63, 949 (2009)CrossRefGoogle Scholar
  18. [18]
    J. Rodríguez-Aseguinolaza, I. Ruiz-Larrea, M.L. Nó, A. López-Echarri, J. San Juan, J. Appl. Phys. 107, 083518 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChina University of PetroleumBeijingChina

Personalised recommendations