Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 28, Issue 6, pp 663–670 | Cite as

Understanding Solid–Solid (fcc → ω + bcc) Transition at Atomic Scale

  • De-Hai PingEmail author
Article

Abstract

An atomic transition model of a face-centered cubic (fcc) crystal to a primitive hexagonal ω and body-centered cubic (bcc) structures has been crystallographically built. The fcc structure can transform into the ω structure through a local shuffling or displacement of atoms about 0.4014 Å in iron for a fcc iron = 3.59 Å. The bcc structure can form either after the ω formation or concurrently by the similar mechanism, or the ω structure can be treated as an intermediate stage during the transition of fcc → bcc. Such a transition (fcc → ω + bcc transition) can be confirmed by Widmanstätten pattern formed in an iron meteorite, pearlitic structure and martensite composed of bcc-ferrite and ultra-fine ω particles in iron–carbon steels. The present fcc–bcc orientation relationship matches with Pitsch’s one.

Keywords

Solid–solid transition ω Transition Martensitic steel Modeling Crystallography Twin Phase transformation 

Notes

Acknowledgments

Part of the work is supported by the Grant of JSPS KAKENHI 15H02304.

References

  1. [1]
    O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Mater. Trans. 49, 2016 (2008)CrossRefGoogle Scholar
  2. [2]
    O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Mater. Sci. Technol. 28, 471 (2012)CrossRefGoogle Scholar
  3. [3]
    M. Cohen, Trans. TMS AIME 224, 638 (1962)Google Scholar
  4. [4]
    G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999)CrossRefGoogle Scholar
  5. [5]
    J.W. Christian (ed.), Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1965)Google Scholar
  6. [6]
    F. Osmond, J. Werth, Annales des Mines 8, 5 (1885)Google Scholar
  7. [7]
    M. Cohen, J.M. Harris, in The Sorby Centennial Symposium on the History of Metallurgy, ed. by C.S. Smith (Gordon and Breach Science Publishers, New York, 1965), pp. 209–233Google Scholar
  8. [8]
    H.M. Howe (ed.), Metallography of Steel and Cast Iron (McGraw-Hill, New York, 1916)Google Scholar
  9. [9]
    A. Westgren, G. Phragmen, J. Iron Steel Inst. 103, 303 (1921)Google Scholar
  10. [10]
    A. Westgren, G. Phragmen, J. Iron Steel Inst. 105, 241 (1922)Google Scholar
  11. [11]
    W.L. Fink, E.D. Campbell, Trans. Am. Soc. Steel Treat. 105, 241 (1926)Google Scholar
  12. [12]
    P.P. Ewald (ed.), Fifty Years of X-ray Diffraction (N.V.A. Oosthoek’s Uitgeversmaatschappij, Utrecht, 1962)Google Scholar
  13. [13]
    K.H. Jack, J. Iron Steel Inst. 169, 26 (1951)Google Scholar
  14. [14]
    E.C. Bain, in The Sorby Centennial Symposium on the History of Metallurgy, ed. by C.S. Smith (Gordon and Breach Science Publishers, New York, 1965), pp. 121–138Google Scholar
  15. [15]
    J.R. Davis (ed.), Metals Handbook (ASM, Materials Park, 1998)Google Scholar
  16. [16]
    D.H. Ping, W.T. Geng, Mater. Chem. Phys. 139, 830 (2013)CrossRefGoogle Scholar
  17. [17]
    D.H. Ping, Acta Metall. Sin. (Engl. Lett.) 27, 1 (2014)Google Scholar
  18. [18]
    P.D. Frost, W.M. Parris, L.L. Hirsch, J.R. Doig, C.M. Schwartz, Trans. Am. Soc. Met. 46, 1056 (1954)Google Scholar
  19. [19]
    B.A. Hatt, J.A. Roberts, G.I. Williams, Nature 180, 1406 (1957)CrossRefGoogle Scholar
  20. [20]
    J.M. Silcock, Acta Metall. 6, 481 (1958)CrossRefGoogle Scholar
  21. [21]
    B.S. Hickman, J. Mater. Sci. 4, 554 (1969)CrossRefGoogle Scholar
  22. [22]
    S.L. Sass, Acta Metall. 17, 813 (1969)CrossRefGoogle Scholar
  23. [23]
    S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater Sci. 27, 245 (1982)CrossRefGoogle Scholar
  24. [24]
    L.M. Hsiung, D.H. Lassila, Acta Mater. 48, 4851 (2000)CrossRefGoogle Scholar
  25. [25]
    D.H. Ping, J. Yin, W.Q. Liu, Y.J. Su, L.J. Rong, X.Q. Zhao, Acta Metall. Sin. 49, 769 (2013). In Chinese CrossRefGoogle Scholar
  26. [26]
    S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, W.L. Xiao, Y. Yang, Q.M. Hu, G.P. Li, R. Yang, Acta Mater. 62, 122 (2014)CrossRefGoogle Scholar
  27. [27]
    W. Pitsch, Philos. Mag. 4, 577 (1959)CrossRefGoogle Scholar
  28. [28]
    C. Cayron, Acta Cryst. A 69, 498 (2013)CrossRefGoogle Scholar
  29. [29]
    W. Pitsch, Acta Metall. 10, 79 (1962)CrossRefGoogle Scholar
  30. [30]
    D.S. Zhou, G.J. Shiflet, Metall. Trans. A 23, 1259 (1992)CrossRefGoogle Scholar
  31. [31]
    N. Zhong, X. Wang, Z. Guo, Y. Rong, J. Mater. Sci. Technol. 27, 475 (2011)CrossRefGoogle Scholar
  32. [32]
    H.J. Bunge, W. Weiss, H. Klein, L. Wcislak, U. Garbe, J.R. Schneider, J. Appl. Cryst. 36, 137 (2003)CrossRefGoogle Scholar
  33. [33]
    A.J. Campbell, M. Humayun, Geochim. Cosmochim. Acta 69, 4733 (2005)CrossRefGoogle Scholar
  34. [34]
    J.T. Wasson, Geochim. Cosmochim. Acta 75, 1757 (2011)CrossRefGoogle Scholar
  35. [35]
    C.Y. Cui, D.H. Ping, J. Alloys Compd. 471, 248 (2009)CrossRefGoogle Scholar
  36. [36]
    G. Shao, P. Tsakiropoulos, Acta Mater. 48, 3671 (2000)CrossRefGoogle Scholar
  37. [37]
    A.F. Yedneral, M.D. Perkas, Phys. Met. Metall. 33, 89 (1972)Google Scholar
  38. [38]
    R. Ayer, L.P. Bendel, V.F. Zackay, Metall. Trans. A 23, 2447 (1992)CrossRefGoogle Scholar
  39. [39]
    C. Djega-Mariadassou, L. Bessaia, C. Servant, Phys. Rev. B 51, 8830 (1995)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations