Skip to main content
Log in

Microstructures and Tensile Properties of Ultrafine-Grained Ni–(1–3.5) wt% SiCNP Composites Prepared by a Powder Metallurgy Route

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Silicon carbide nanoparticle-reinforced nickel-based composites (Ni–SiCNP), with a SiCNP content ranged from 1 to 3.5 wt%, were prepared using mechanical alloying and spark plasma sintering. In addition, unreinforced pure nickel samples were also prepared for comparative purposes. To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–SiCNP composites transmission electron microscopy (TEM) was used, while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests. TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample, whereas, for the Ni–SiCNP composites, the presence of nano-dispersed SiCNP and twinning crystals was observed. These homogeneously distributed SiCNP were found located either within the matrix, between twins or on grain boundaries. For the Ni–SiCNP composites, coerced coarsening of the SiCNP assembly occurred with increasing SiCNP content. Furthermore, the grain sizes of the Ni–SiCNP composites were much finer than that of the unreinforced pure nickel, which was considered to be due to the composite ball milling process. In all cases, the Ni–SiCNP composites showed higher strengths and hardness values than the unreinforced pure nickel, likely due to a combination of dispersion strengthening (Orowan effects) and particle strengthening (Hall–Petch effects). For the Ni–SiCNP composites, the strength increased initially and then decreased as a function of SiCNP content, whereas their elongation percentages decreased linearly. Compared to all materials tested, the Ni–SiCNP composite containing 1.5% SiC was found more superior considering both their strength and plastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Ibrahim, F. Mohamed, E. Lavernia, J. Mater. Sci. 26, 1137–1156 (1991)

    Article  Google Scholar 

  2. F. Kiliç, H. Gül, S. Aslan, A. Alp, H. Akbulut, Colloids Surf. A 419, 53–60 (2013)

    Article  Google Scholar 

  3. C. Dezauzier, N. Becourt, G. Arnaud, S. Contreras, J. Ponthenier, J. Camassel, J. Robert, J. Pascual, C. Jaussaud, Sens. Actuators A 46, 71–75 (1995)

    Article  Google Scholar 

  4. B.M. Epelbaum, P.A. Gurzhiyants, S.V. Belenko, Mater. Lett. 34, 423–429 (1998)

    Article  Google Scholar 

  5. D. Planson, M.-L. Locatelli, F. Lanois, J.-P. Chante, Mater. Sci. Eng. B 61, 497–501 (1999)

    Article  Google Scholar 

  6. M. Bruzzi, F. Nava, S. Pini, S. Russo, Appl. Surf. Sci. 184, 425–430 (2001)

    Article  Google Scholar 

  7. R. Wäsche, D. Klaffke, Wear 249, 220–228 (2001)

    Article  Google Scholar 

  8. P. Wellmann, S. Bushevoy, R. Weingärtner, Mater. Sci. Eng. B 80, 352–356 (2001)

    Article  Google Scholar 

  9. Y. Saberi, S. Zebarjad, G. Akbari, J. Alloys Compd. 484, 637–640 (2009)

    Article  Google Scholar 

  10. B. Ghosh, S. Pradhan, J. Alloys Compd. 486, 480–485 (2009)

    Article  Google Scholar 

  11. V. Izhevskyi, L. Genova, A. Bressiani, J. Bressiani, I. Int, J. Refract. Met. Hard. Mater. 19, 409–417 (2001)

    Article  Google Scholar 

  12. K. Mussert, W.P. Vellinga, A. Bakker, S. Van Der Zwaag, J. Mater. Sci. 37, 789–794 (2002)

    Article  Google Scholar 

  13. C. Carreño-Gallardo, I. Estrada-Guel, C. López-Meléndez, R. Martínez-Sánchez, J. Alloys Compd. 586, S68–S72 (2014)

    Article  Google Scholar 

  14. L. Orlovskaja, N. Periene, M. Kurtinaitiene, S. Surviliene, Surf. Coat. Technol. 111, 234–239 (1999)

    Article  Google Scholar 

  15. N.K. Shrestha, M. Masuko, T. Saji, Wear 254, 555–564 (2003)

    Article  Google Scholar 

  16. B. El-Dasher, J. Farmer, J. Ferreira, M.S. de Caro, A. Rubenchik, A. Kimura, J. Nucl. Mater. 419, 15–23 (2011)

    Article  Google Scholar 

  17. T. Yamasaki, Y. Zheng, Y. Ogino, M. Terasawa, T. Mitamura, T. Fukami, Mater. Sci. Eng. A 350, 168–172 (2003)

    Article  Google Scholar 

  18. S. Qin, C. Chen, G. Zhang, W. Wang, Z. Wang, Mater. Sci. Eng. A 272, 363–370 (1999)

    Article  Google Scholar 

  19. K. Zhang, I. Alexandrov, R. Valiev, K. Lu, J. Appl. Phys. 84, 1924–1927 (1998)

    Article  Google Scholar 

  20. Q. Yang, A. Ghosh, Acta Mater. 54, 5159–5170 (2006)

    Article  Google Scholar 

  21. H.W. Höppel, J. May, M. Göken, Adv. Eng. Mater. 6, 781–784 (2004)

    Article  Google Scholar 

  22. E. Ma, Y. Wang, Q. Lu, M. Sui, L. Lu, K. Lu, Appl. Phys. Lett. 85, 4932–4934 (2004)

    Article  Google Scholar 

  23. R. Valiev, I. Alexandrov, Y. Zhu, T. Lowe, J. Mater. Res. 17, 5–8 (2002)

    Article  Google Scholar 

  24. H. Mughrabi, H. Höppel, M. Kautz, Scr. Mater. 51, 807–812 (2004)

    Article  Google Scholar 

  25. V. Kaune, C. Müller, Mater. Sci. Eng. A 535, 1–5 (2012)

    Article  Google Scholar 

  26. L.Q. Chen, Y.T. Yao, Acta Metall. Sin. (Engl. Lett.) 27, 762–774 (2014)

    Article  Google Scholar 

  27. Y. Cui, L.D. Wang, B. Li, G.J. Cao, W.D. Fei, Acta Metall. Sin. (Engl. Lett.) 27, 937–943 (2014)

    Article  Google Scholar 

  28. K. Maweja, M. Phasha, Y. Yamabe-Mitarai, J. Alloys Compd. 523, 167–175 (2012)

    Article  Google Scholar 

  29. C.-L. Chen, Y.-M. Dong, Mater. Sci. Eng. A 528, 8374–8380 (2011)

    Article  Google Scholar 

  30. Z.R. Hesabi, H. Hafizpour, A. Simchi, Mater. Sci. Eng. A 454, 89–98 (2007)

    Article  Google Scholar 

  31. Y. Huang, Q.B. Ouyang, D. Zhang, J. Zhu, R.X. Li, H. Yu, Acta Metall. Sin. (Engl. Lett.) 27, 775–786 (2014)

    Article  Google Scholar 

  32. M. Hussain, Y. Oku, A. Nakahira, K. Niihara, Mater. Lett. 26, 177–184 (1996)

    Article  Google Scholar 

  33. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 27, 901–908 (2014)

    Article  Google Scholar 

  34. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, R.W. Armstrong, Scripta. Metall. 20, 93–97 (1986)

    Article  Google Scholar 

  35. J.S. Benjamin, Metall. Trans. 1, 2943–2951 (1970)

    Google Scholar 

  36. C.P. Huang, C. Chen, C.Y. Liu, S.S. Lin, K.H. Chen, J. Mater. Res. 20, 2772–2779 (2005)

    Article  Google Scholar 

  37. A.-F. Gourgues-Lorenzon, J.-M. Haudin, Matériaux pour l’ingénieur (Presses des mines, Paris, 2010), pp. 159–170

    Google Scholar 

Download references

Acknowledgments

This research was supported by the China-Australia Joint Research Project (Grant No. 2014DFG60230), Knowledge Innovation program of Chinese Academy of Sciences and National Basic Research Program of China (Grant No. 2010CB832903 and 2010CB834503). The authors are grateful to “Shanghai Key Laboratory for High Temperature Materials and Precision Forming” for materials preparation by providing the SPS furnace.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Fei Huang or Xing-Tai Zhou.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Huang, HF., de los Reyes, M. et al. Microstructures and Tensile Properties of Ultrafine-Grained Ni–(1–3.5) wt% SiCNP Composites Prepared by a Powder Metallurgy Route. Acta Metall. Sin. (Engl. Lett.) 28, 809–816 (2015). https://doi.org/10.1007/s40195-015-0261-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0261-5

Keywords

Navigation