Abstract
A broken-bond type computational method has been developed for the calculation of the five-dimensional grain boundary energy. The model allows quick quantification of the unrelaxed five-dimensionally specified grain boundary energy in arbitrary orientations. It has been validated on some face-centred cubic metals. The stereo projections of grain boundary energy of ∑3, ∑5, ∑7, ∑9, ∑11, ∑17b and ∑31a have been studied. The results of Ni closely resemble experimentally determined grain boundary energy distribution figures, suggesting that the overall anisotropy of grain boundary energy can be reasonably approximated by the present simple model. Owing to the overlooking of relaxation matter, the absolute values of energy calculated in present model are found to be higher than molecular dynamic-based results by a consistent magnitude, which is 1 J/m2 for Ni. The coverage of present method forms a bridge between atomistic and meso-scale simulations regarding polycrystalline microstructure.
Similar content being viewed by others
References
S.E. Offerman, Science 305, 190 (2004)
D.M. Saylor, A. Morawiec, G.S. Rohrer, Acta Mater. 51, 3663 (2003)
J. Konrad, S. Zaefferer, D. Raabe, Acta Mater. 54, 1369 (2006)
M. Groeber, B. Haley, M. Uchic, D. Dimiduk, S. Ghosh, Mater. Charact. 57, 259 (2006)
V. Randle, R. Jones, Mater. Sci. Eng. A 524, 134 (2009)
J. Li, S.J. Dillon, G.S. Rohrer, Acta Mater. 57, 4304 (2009)
H. Beladi, G.S. Rohrer, A.D. Rollett, V. Tari, P.D. Hodgson, Acta Mater. 63, 86 (2014)
H. Beladi, G.S. Rohrer, Acta Mater. 61, 1404 (2013)
A.J. Wilkinson, T.B. Britton, Mater. Today 15, 366 (2012)
M. Kartal, F. Dunne, A.J. Wilkinson, Acta Mater. 60, 5300 (2012)
H.K. Kim, S.G. Kim, W. Dong, I. Steinbach, B.J. Lee, Model. Simul. Mater. Sci. Eng. 22, 034004 (2014)
A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Hoboken, 1995)
Q. Jiang, H. Lu, Surf. Sci. Rep. 63, 427 (2008)
D.L. Olmsted, S.M. Foiles, E.A. Holm, Acta Mater. 57, 3694 (2009)
A.P. Sutton, R.W. Balluffi, Acta Metall. 35, 2177 (1987)
V.V. Bulatov, B.W. Reed, M. Kumar, Acta Mater. 65, 161 (2014)
H.K. Kim, W.S. Ko, H.H. Lee, S.G. Kim, B.J. Lee, Scr. Mater. 64, 1152 (2011)
E.A. Holm, D.L. Olmsted, S.M. Foiles, Scr. Mater. 63, 905 (2010)
A.R.S. Gautam, J.M. Howe, Philos. Mag. 91, 3203 (2011)
F. Dai, W. Zhang, Model. Simul. Mater. Sci. Eng. 21, 075002 (2013)
Y. Shibuta, S. Takamoto, T. Suzuki, ISIJ Int. 48, 1582 (2008)
D. Wolf, J. Appl. Phys. 68, 3221 (1990)
D. Wolf, Acta Metall. Mater. 38, 781 (1990)
D. Wolf, J. Mater. Res. 5, 1708 (1990)
D. Wolf, Acta Metall. Mater. 38, 791 (1990)
D. Wolf, Acta Metall. 37, 2823 (1989)
D. Wolf, Acta Metall. 37, 1983 (1989)
C. Luo, G. Weatherly, Acta Metall. 35, 1963 (1987)
M.A. Tschopp, D.L. McDowell, Philos. Mag. 87, 3147 (2007)
M.A. Tschopp, D.L. McDowell, Philos. Mag. 87, 3871 (2007)
M. Finnis, J. Phys.: Condens. Mater. 8, 5811 (1996)
Y. Luo, R. Qin, Surf. Sci. 624, 103 (2014)
J. Rose, J. Smith, F. Guinea, J. Ferrante, Phys. Rev. B 29, 2963 (1984)
H.K.D.H. Bhadeshia, Worked Examples in the Geometry of Crystals, 2nd edn. (The Institute of Materials, London, 2001)
V. Randle, G.S. Rohrer, H. Miller, M. Coleman, G. Owen, Acta Mater. 56, 2363 (2008)
G. Hasson, J.Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, Surf. Sci. 31, 115 (1972)
I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)
Acknowledgments
The authors are grateful for the financial support from TATA Steel and the Royal Academy of Engineering.
Author information
Authors and Affiliations
Corresponding author
Additional information
Available online at http://link.springer.com/journal/40195
Rights and permissions
About this article
Cite this article
Luo, YK., Qin, RS. Computation of Five-Dimensional Grain Boundary Energy. Acta Metall. Sin. (Engl. Lett.) 28, 634–640 (2015). https://doi.org/10.1007/s40195-015-0242-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40195-015-0242-8