Skip to main content

Advertisement

Log in

Computation of Five-Dimensional Grain Boundary Energy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A broken-bond type computational method has been developed for the calculation of the five-dimensional grain boundary energy. The model allows quick quantification of the unrelaxed five-dimensionally specified grain boundary energy in arbitrary orientations. It has been validated on some face-centred cubic metals. The stereo projections of grain boundary energy of ∑3, ∑5, ∑7, ∑9, ∑11, ∑17b and ∑31a have been studied. The results of Ni closely resemble experimentally determined grain boundary energy distribution figures, suggesting that the overall anisotropy of grain boundary energy can be reasonably approximated by the present simple model. Owing to the overlooking of relaxation matter, the absolute values of energy calculated in present model are found to be higher than molecular dynamic-based results by a consistent magnitude, which is 1 J/m2 for Ni. The coverage of present method forms a bridge between atomistic and meso-scale simulations regarding polycrystalline microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.E. Offerman, Science 305, 190 (2004)

    Article  Google Scholar 

  2. D.M. Saylor, A. Morawiec, G.S. Rohrer, Acta Mater. 51, 3663 (2003)

    Article  Google Scholar 

  3. J. Konrad, S. Zaefferer, D. Raabe, Acta Mater. 54, 1369 (2006)

    Article  Google Scholar 

  4. M. Groeber, B. Haley, M. Uchic, D. Dimiduk, S. Ghosh, Mater. Charact. 57, 259 (2006)

    Article  Google Scholar 

  5. V. Randle, R. Jones, Mater. Sci. Eng. A 524, 134 (2009)

    Article  Google Scholar 

  6. J. Li, S.J. Dillon, G.S. Rohrer, Acta Mater. 57, 4304 (2009)

    Article  Google Scholar 

  7. H. Beladi, G.S. Rohrer, A.D. Rollett, V. Tari, P.D. Hodgson, Acta Mater. 63, 86 (2014)

    Article  Google Scholar 

  8. H. Beladi, G.S. Rohrer, Acta Mater. 61, 1404 (2013)

    Article  Google Scholar 

  9. A.J. Wilkinson, T.B. Britton, Mater. Today 15, 366 (2012)

    Article  Google Scholar 

  10. M. Kartal, F. Dunne, A.J. Wilkinson, Acta Mater. 60, 5300 (2012)

    Article  Google Scholar 

  11. H.K. Kim, S.G. Kim, W. Dong, I. Steinbach, B.J. Lee, Model. Simul. Mater. Sci. Eng. 22, 034004 (2014)

    Article  Google Scholar 

  12. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Hoboken, 1995)

    Google Scholar 

  13. Q. Jiang, H. Lu, Surf. Sci. Rep. 63, 427 (2008)

    Article  Google Scholar 

  14. D.L. Olmsted, S.M. Foiles, E.A. Holm, Acta Mater. 57, 3694 (2009)

    Article  Google Scholar 

  15. A.P. Sutton, R.W. Balluffi, Acta Metall. 35, 2177 (1987)

    Article  Google Scholar 

  16. V.V. Bulatov, B.W. Reed, M. Kumar, Acta Mater. 65, 161 (2014)

    Article  Google Scholar 

  17. H.K. Kim, W.S. Ko, H.H. Lee, S.G. Kim, B.J. Lee, Scr. Mater. 64, 1152 (2011)

    Article  Google Scholar 

  18. E.A. Holm, D.L. Olmsted, S.M. Foiles, Scr. Mater. 63, 905 (2010)

    Article  Google Scholar 

  19. A.R.S. Gautam, J.M. Howe, Philos. Mag. 91, 3203 (2011)

    Article  Google Scholar 

  20. F. Dai, W. Zhang, Model. Simul. Mater. Sci. Eng. 21, 075002 (2013)

    Article  Google Scholar 

  21. Y. Shibuta, S. Takamoto, T. Suzuki, ISIJ Int. 48, 1582 (2008)

    Article  Google Scholar 

  22. D. Wolf, J. Appl. Phys. 68, 3221 (1990)

    Article  Google Scholar 

  23. D. Wolf, Acta Metall. Mater. 38, 781 (1990)

    Article  Google Scholar 

  24. D. Wolf, J. Mater. Res. 5, 1708 (1990)

    Article  Google Scholar 

  25. D. Wolf, Acta Metall. Mater. 38, 791 (1990)

    Article  Google Scholar 

  26. D. Wolf, Acta Metall. 37, 2823 (1989)

    Article  Google Scholar 

  27. D. Wolf, Acta Metall. 37, 1983 (1989)

    Article  Google Scholar 

  28. C. Luo, G. Weatherly, Acta Metall. 35, 1963 (1987)

    Article  Google Scholar 

  29. M.A. Tschopp, D.L. McDowell, Philos. Mag. 87, 3147 (2007)

    Article  Google Scholar 

  30. M.A. Tschopp, D.L. McDowell, Philos. Mag. 87, 3871 (2007)

    Article  Google Scholar 

  31. M. Finnis, J. Phys.: Condens. Mater. 8, 5811 (1996)

    Google Scholar 

  32. Y. Luo, R. Qin, Surf. Sci. 624, 103 (2014)

    Article  Google Scholar 

  33. J. Rose, J. Smith, F. Guinea, J. Ferrante, Phys. Rev. B 29, 2963 (1984)

    Article  Google Scholar 

  34. H.K.D.H. Bhadeshia, Worked Examples in the Geometry of Crystals, 2nd edn. (The Institute of Materials, London, 2001)

  35. V. Randle, G.S. Rohrer, H. Miller, M. Coleman, G. Owen, Acta Mater. 56, 2363 (2008)

    Article  Google Scholar 

  36. G. Hasson, J.Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, Surf. Sci. 31, 115 (1972)

    Article  Google Scholar 

  37. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from TATA Steel and the Royal Academy of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Shan Qin.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YK., Qin, RS. Computation of Five-Dimensional Grain Boundary Energy. Acta Metall. Sin. (Engl. Lett.) 28, 634–640 (2015). https://doi.org/10.1007/s40195-015-0242-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0242-8

Keywords

Navigation