Skip to main content
Log in

Structural, Optical, and Ferroelectric Behaviors of Cu1−x Li x O (0 ≤ x ≤ 0.09) Nanostructures

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

We report structural, optical, and ferroelectric behaviors of lithium-doped copper oxide (Cu1−x Li x O with x = 0.0, 0.05, 0.07, and 0.09) nanostructures synthesized by hydrothermal method. The XRD pattern indicates the pure phase formation of CuO without any impurity, and the crystallite size is found to be increases for x = 0–0.07 and decreases for x = 0.09. FESEM analysis shows that the average size of Cu1−x Li x O nanostructures increases with the increasing the Li-doping concentrations up to 7% and then decreases for 9% Li doping concentration. Moreover, Raman and photoluminescence spectrum also confirm the phase formation of CuO. A significant reduction in optical band gap is observed up to x = 0.07, and then band gap increases for x = 0.09 due to segregation of the impurities on the surface or grain boundaries, which may suppress the grain growth and results the enhancement in optical band gap. Moreover, a weak ferroelectricity is observed in CuO nanostructures for pure and 9% Li doping through polarization versus electric field (P–E).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Sahooli, S. Sabbaghi, R. Saboori, Mater. Lett. 81, 169 (2012)

    Article  Google Scholar 

  2. P. Ball, G. Li, Nature 355, 761 (1992)

    Article  Google Scholar 

  3. N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, Mater. Lett. 65, 3248 (2011)

    Article  Google Scholar 

  4. S.K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, B. Karmakar, J. Solid State Chem. 183, 1900 (2010)

    Article  Google Scholar 

  5. G. Narsinga Rao, Y.D. Yao, J.W. Chen, J. Appl. Phys. 105, 093901 (2009)

    Article  Google Scholar 

  6. A. El-Trass, H. Elshamy, I. El-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012)

    Article  Google Scholar 

  7. F. Bayansal, H.A. Cetinkara, S. Kahraman, H.M. Cakmak, H.S. Guder, Ceram. Int. 38, 1859 (2012)

    Article  Google Scholar 

  8. S. Zaman, M.H. Asif, A. Zainelabdin, G. Amin, O. Nur, M. Willander, J. Electroanal. Chem. 662, 421 (2011)

    Article  Google Scholar 

  9. M. Wan, D. Jin, R. Feng, L. Si, M. Gao, L. Yue, Inorg. Chem. Commun. 14, 38 (2011)

    Article  Google Scholar 

  10. S. Jana, S. Das, N.S. Das, K.K. Chattopadhyay, Mater. Res. Bull. 45, 693 (2010)

    Article  Google Scholar 

  11. M.J. Song, S.W. Hwang, D. Whang, Talanta 80, 1648 (2010)

    Article  Google Scholar 

  12. Y. Lin Min, Tao Wang, Y.C. Chen, Appl. Surf. Sci. 257, 132 (2010)

    Article  Google Scholar 

  13. J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, J. Power Sources 195, 313 (2010)

    Article  Google Scholar 

  14. G. Rena, D. Hub, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Int. J. Antimicrobial Agent 33, 587 (2009)

    Article  Google Scholar 

  15. J. Maul, A.S. Brito, A.L.M. de Oliveira, S.J.G. Lim, M.A.M.A. Maurera, D. Keyson, A.G. Souza, I.M.G. Santos, J. Therm. Anal. Calorim. 106, 519 (2011)

    Article  Google Scholar 

  16. R. Vijayakumar, R. Elgamiel, Y. Diamant, A. Gedanken, Langmuir 17, 1406 (2001)

    Article  Google Scholar 

  17. Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, Z. Zhang, J. Cryst. Growth 291, 196 (2006)

    Article  Google Scholar 

  18. J. Wang, J. Yang, J. Sun, Y. Bao, Mater. Des. 25, 625 (2004)

    Article  Google Scholar 

  19. M. Gartner, R. Scurtu, A. Ghita, M. Zahar, M. Modr, C. Trapalis, M. Kokkoris, G. Kordas, Thin Solid Film 455–456, 417 (2004)

    Article  Google Scholar 

  20. G.F. Zou, H. Li, D.W. Zhang, K. Xiong, C. Dong, Y.T. Qian, J. Phys. Chem. B 110, 1632 (2006)

    Article  Google Scholar 

  21. Q. Liu, H. Liu, Y. Liang, Z. Xu, G. Yin, Mater. Res. Bull. 41, 697 (2006)

    Article  Google Scholar 

  22. R.S. Ningthoujam, N.S. Gajbhiye, A. Ahmed, S.S. Umre, S.J. Sharma, J. Nanosci. Nanotechnol. 8, 3059 (2008)

    Article  Google Scholar 

  23. J. Hu, Y. Bando, Appl. Phys. Lett. 82, 1401 (2003)

    Article  Google Scholar 

  24. J.C. Irwin, J. Chrzanowski, T. Wei, D.J. Lockwood, A. Wold, Physcia C 166, 456 (1990)

    Article  Google Scholar 

  25. M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Appl. Surf. Sci. 255, 6279 (2009)

    Article  Google Scholar 

  26. J. Tauc, Amrphous and Liquid Semiconductors, vol. 8 (Plenum Press, London, 1974)

    Book  Google Scholar 

  27. P. Chand, A. Gaur, A. Kumar, J. Alloys Compd. 539, 174 (2012)

    Article  Google Scholar 

  28. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  29. I. Hamberg, C.G. Granquist, J. Appl. Phys. 60, R123 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Ravi Kumar and technical staff of Department of Material Science & Engineering, NIT Hamirpur for providing technical support during FESEM and Raman measurements. The authors are also grateful to the Director, NIT Kurukshetra for providing the facilities in Physics Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gaur.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, P., Gaur, A. & Kumar, A. Structural, Optical, and Ferroelectric Behaviors of Cu1−x Li x O (0 ≤ x ≤ 0.09) Nanostructures. Acta Metall. Sin. (Engl. Lett.) 27, 306–312 (2014). https://doi.org/10.1007/s40195-014-0046-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0046-2

Keywords

Navigation