Skip to main content
Log in

Numerical simulation of the dynamic behaviors of a gas tungsten welding arc for joining magnesium alloy AZ61A

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Based on the Magneto-Hydro-Dynamic (MHD) theory, a united three-dimensional (3D) transient numerical model is developed to investigate the dynamic behaviors of arc plasma for a magnesium alloy AZ61A gas tungsten arc welding (GTAW) arc. The arc, electrode and workpiece are integrated into one calculation domain to avoid both presumed distribution of the current density at the electrode tip and the assumption of constant conditions of interface between welding arc and workpiece. The distributions of electric potential, current density, magnetic flux density, electromagnetic force, velocity, temperature, and pressure of the arc plasma in the 3D space are analyzed by using the numerical model. Results indicate that the maximum gradient of the electric potential in the whole arc space exists around the electrode tip, where the electric current density, electromagnetic force, and temperature are also the maximum. However, maximum pressure is found at the velocity stagnation, which is above the workpiece. Comparison between predicted temperature and measured one in arc region shows a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Oishi, N. Kawabe, A. Hoshima, Y. Okazaki and A. Kishimoto, SEI Technol. Rev. 56 (2003) 54.

    Google Scholar 

  2. L. Liu and C. Dong, Mater. Lett. 60 (2006) 2194.

    Article  CAS  Google Scholar 

  3. A. Munitz, C. Cotler, A. Stern and G. Kohn, Mater. Sci. Eng. A 302 (2001) 68.

    Article  Google Scholar 

  4. K.C. Hsu, K. Etemadi and E. Pfender, J. Appl. Phys. 54 (1983) 1293.

    Article  CAS  Google Scholar 

  5. K.C. Hsu and E. Pfender, J. Appl. Phys. 54 (1983) 4359.

    Article  CAS  Google Scholar 

  6. J. McKelliget and J. Szekely, Metall. Trans. A 17 (1986) 1139.

    Article  Google Scholar 

  7. S.Y. Lee and S.J. Na, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 209 (1995) 153.

    Article  Google Scholar 

  8. J.J. Lowke, R. Morrow and J. Haidar, J. Phys. D: Appl. Phys. 30 (1997) 2033.

    Article  CAS  Google Scholar 

  9. V.A. Nemchinsky, J. Phys. D: Appl. Phys. 27 (1994) 1433.

    Article  CAS  Google Scholar 

  10. J. Hu and H.L. Tsai, Heat. Mass. Transfer. 50 (2007) 833.

    Article  Google Scholar 

  11. J.J. Lowke, P. Kovitya and H.P. Schmidt, J. Phys. D: Appl. Phys. 25 (1992) 1600.

    Article  CAS  Google Scholar 

  12. M. Tanaka, H. Terasaki, M. Ushio and J.J. Lowke, Metall. Mater. Trans. A 33 (2002) 2043.

    Article  Google Scholar 

  13. C.S. Wu and J.Q. Gao, J. Mater. Sci. Technol. 18 (2002) 43.

    CAS  Google Scholar 

  14. G. Xu, J. Hu, and H.L. Tsai, J. Appl. Phys. 104 (2008) 103301-9.

    Google Scholar 

  15. W. Zhang, C.H. Kim and T. DebRoy, J. Appl. Phys. 95 (2004) 5210.

    Article  CAS  Google Scholar 

  16. P.F. Mendez, M.A. Ramirez, G. Trapaga and T.W. Eagar, Metall. Mater. Trans. B 32 (2001) 547.

    Article  Google Scholar 

  17. W.H. Kim, H. G. Fan and S. J. Na, Metall. Mater. Trans. B 28 (1997) 679.

    Article  Google Scholar 

  18. H.G. Fan, S-J Na and Y. W. Shi, J. Phys. D: Appl. Phys. 30 (1997) 94.

    Article  CAS  Google Scholar 

  19. G.L. Liang, G. Zhou and S.Q. Yuan, Mater. Sci. Eng. A. 499 (2009) 93.

    Article  Google Scholar 

  20. C. Delalondre and O. Simonin, J. Phys. Coll. 51(C5) (1990) 199.

    Google Scholar 

  21. S.V. Patanka, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980, p.126.

    Google Scholar 

  22. Z.H. Chen, Magnesium Alloy, Chemical Industry Press, Beijing, 2005, p. 10. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yan, F. & Zhao, P. Numerical simulation of the dynamic behaviors of a gas tungsten welding arc for joining magnesium alloy AZ61A. ACTA METALL SIN 26, 588–596 (2013). https://doi.org/10.1007/s40195-012-0187-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-012-0187-0

Key Words

Navigation