Skip to main content
Log in

Dissimilar transient liquid phase bonding of Ti-6Al-4V alloy to Inconel 625 superalloy: effect of bonding temperature on microstructural evolutions and mechanical properties

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The present study investigated the effect of bonding temperature on the dissimilar transient liquid phase (TLP)–bonded IN-625/Ti-6Al-4V dissimilar joints using a thin foil of pure copper as the interlayer. The samples were bonded in a vacuum chamber at 900, 930, and 960 °C for 60 min. The results indicated the occurrence of different intermetallic compounds such as Ti2Cu, TiCu2, TiCu, NiTi, and Ni3Ti at different bonding temperatures, and it was concluded that in all the samples, isothermal solidification was accomplished. Maximum shear strength of 278 MPa was achieved at 930 °C. At lower bonding temperatures, the presence of porosities and cracks decreases the shear strength. At higher temperatures, a high-volume percentage of intermetallic compounds embrittled the specimen and reduced its shear strength. The results of scanning electron microscopy of the fracture surfaces revealed the formation of extensive cleavage fracture and river-like patterns in all samples, indicating a brittle failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Alamri AH (2020) Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines – an overview. Eng Fail Anal 116:104735. https://doi.org/10.1016/j.engfailanal.2020.104735

    Article  CAS  Google Scholar 

  2. Xie R, Lin N, Zhou P et al (2018) Applied surface science surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application : characterizations of microstructure and evaluations on surface performance. Appl Surf Sci 436:467–476. https://doi.org/10.1016/j.apsusc.2017.12.047

    Article  CAS  Google Scholar 

  3. Aleman B, Rrez IG, Urcola JJ (1995) Interface microstructures in the diffusion bonding of a titanium alloy Ti 6242 to an INCONEL 625. 26. https://doi.org/10.1007/BF02664680

  4. Verdi D, Varadaraju N, Tan E et al (2021) Effect of manufacturing strategy on the toughness behavior of Inconel 625 laser metal deposited parts. 2001506:1–14. https://doi.org/10.1002/adem.202001506

  5. Khollari MAR, Ghorbani M, Afshar A (2019) Fabrication and characterization of TiO2 deposited black electroless Ni-P solar absorber. Appl Surf Sci 496:143632. https://doi.org/10.1016/j.apsusc.2019.143632

    Article  CAS  Google Scholar 

  6. Lourenço JC, Souza LP, Faria MIST et al (2021) Influence of the iron content on the microstructure and electrochemical behavior of as-cast modified Inconel 625. Corros Sci 193:109892. https://doi.org/10.1016/j.corsci.2021.109892

    Article  CAS  Google Scholar 

  7. Zhao Q, Pi Z, Lu X et al (2020) Superior strength-ductility balance in hot pressed swarf-Ti-6Al–4V alloy. Mater Sci Eng A 788:139574. https://doi.org/10.1016/j.msea.2020.139574

    Article  CAS  Google Scholar 

  8. Cooke KO, Richardson A, Khan TI, Shar MA (2020) High-temperature diffusion bonding of Ti – 6Al – 4V and super-duplex stainless steel using a Cu interlayer embedded with alumina nanoparticles. https://doi.org/10.3390/jmmp4010003

  9. Cook GO, Carl III (2011) Overview of transient liquid phase and partial transient liquid phase bonding. 5305–5323. https://doi.org/10.1007/s10853-011-5561-1

  10. Bonding D (2018) Diffusion bonding and brazing of advanced materials. 2–4. https://doi.org/10.3390/met8110959

  11. Jamaloei AD, Salimijazi HR, Edris H, Mostaghimi J (2017) Study of TLP bonding of Ti-6Al-4V alloy produced by vacuum plasma spray forming and forging. Mater Des 121:355–366. https://doi.org/10.1016/j.matdes.2017.02.046

    Article  Google Scholar 

  12. Deng Y, Sheng G, Wang F et al (2016) Microstructure evolution and mechanical properties of transient liquid phase bonded Ti–6Al–4V joint with copper interlayer. Mater Des 92:1–7. https://doi.org/10.1016/j.matdes.2015.11.103

    Article  CAS  Google Scholar 

  13. Chen H-C, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Technol 52:977–987. https://doi.org/10.1007/s00170-010-2791-3

    Article  Google Scholar 

  14. Jung DH, Sharma A, Mayer M, Jung JP (2018) A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. https://doi.org/10.1515/rams-2018-0011

  15. Phase TL (1992) Transient liquid phase bonding. 23–46

  16. Reeks W, Davies H, Marchisio S (2020) A review : interlayer joining of nickel base alloys. J Adv Join Process 2:100030. https://doi.org/10.1016/j.jajp.2020.100030

    Article  Google Scholar 

  17. Alhazaa A, Haneklaus N (2020) Diffusion bonding and transient liquid phase (TLP) bonding of type 304 and 316 austenitic stainless steel — a review of similar and dissimilar material joints. https://doi.org/10.3390/met10050613

  18. Ghahderijani IA, Bahrami A, Shamanian M, Mokhtari MA (2022) Transient liquid phase (TLP) bonding of Ti–6Al–4V/AISI 304 stainless steel using Cu/CNT composite interlayer. J Market Res 20:4052–4065. https://doi.org/10.1016/j.jmrt.2022.08.151

    Google Scholar 

  19. Tazikeh H, Mirsalehi SE, Shamsipur A (2022) Relationship of isothermal solidification completion and precipitate formation with mechanical properties of Inconel 939 joints vacuum TLP bonded by an amorphous Ni–Cr–Fe–Si–B filler alloy. J Market Res 18:4762–4774. https://doi.org/10.1016/j.jmrt.2022.04.139

    CAS  Google Scholar 

  20. Yang M, Wang Y, Ding R et al (2023) Precipitates evolution and fracture mechanism of the isothermally solidified TLP bonding joints between 316LN stainless steel and IN718 Ni-based alloy. Mater Sci Eng A 881:145440. https://doi.org/10.1016/j.msea.2023.145440

    Article  CAS  Google Scholar 

  21. Nishi R, Ong FS, Tobe H, Sato E (2022) Strength optimization of low-pressure transient liquid phase bonded Ti–6Al–4V similar joint with Cu–Ni multi-interlayer. Mater Sci Eng A 846:143275. https://doi.org/10.1016/j.msea.2022.143275

    Article  CAS  Google Scholar 

  22. Deng Y, Zhong W, Xu H (2021) Interlayer design for partial transient liquid phase bonding of titanium and copper. Mater Sci Eng A 807:140879. https://doi.org/10.1016/j.msea.2021.140879

    Article  CAS  Google Scholar 

  23. Park HJ, Park DY (2023) Quantification of intermetallic phases in transient liquid phase-bonded Inconel617/MBF30 via image processing. Mater Charact 199:112808. https://doi.org/10.1016/j.matchar.2023.112808

    Article  CAS  Google Scholar 

  24. Yan G, Bhowmik A, Gill V et al (2023) The study of Ni-Sn transient liquid phase bonded joints under high temperatures. Mater Charact. https://doi.org/10.1016/j.matchar.2023.113099

  25. Farzadi A, Esmaeili H, Mirsalehi SE (2019) Transient liquid phase bonding of Inconel 617 superalloy: effect of filler metal type and bonding time. Weld World 63:191–200. https://doi.org/10.1007/s40194-018-0662-y

  26. Nasajpour A, Mirsalehi SE, Farzadi A (2022) Effect of homogenization on metallurgical structure of nicrofer 5520 (IN-617) superalloy joints diffusion-brazed using a Ni–Cr–Si–B interlayer. JOM 74:3276–3288. https://doi.org/10.1007/s11837-022-05292-2

  27. Esmaeili H, Mirsalehi SE, Farzadi A (2017) Effect of joining atmosphere in transient liquid phase bonding of Inconel 617 superalloy. Metall Mater Trans B 48:3259–3269. https://doi.org/10.1007/s11663-017-1098-2

    Article  CAS  Google Scholar 

  28. Nasajpour A, Mirsalehi SE, Farzadi A (2022) Diffusion brazing of Nicrofer 5520 (IN-617) superalloy using an amorphous Ni-Cr-Si-B interlayer: microstructural characterization and mechanical properties. Met Mater/Kov Mater 60. https://doi.org/10.31577/km.2022.2.89

  29. Sadeghian A, Mirsalehi SE, Arhami F et al (2021) Effect of bonding time on dissimilar transient liquid phase (TLP) bonding of IN939 to IN625 superalloys: microstructural characterization and mechanical properties. Metall Mater Trans A 52:1526–1539. https://doi.org/10.1007/s11661-021-06176-x

    Article  CAS  Google Scholar 

  30. Arhami F, Mirsalehi SE (2018) Microstructural evolution and mechanical properties evaluation of IN-939 bonds made by isothermal solidification of a liquated Ni-Cr-B interlayer. Metall Mater Trans A 49:6197–6214. https://doi.org/10.1007/s11661-018-4918-3

    Article  CAS  Google Scholar 

  31. Arhami F, Mirsalehi SE (2019) The effect of heat treatment sequence on microstructure and mechanical properties of diffusion brazed IN-939 superalloy. J Mater Process Technol 266:351–362. https://doi.org/10.1016/j.jmatprotec.2018.11.020

    Article  CAS  Google Scholar 

  32. Malekan A, Farvizi M, Mirsalehi SE et al (2019) Effect of bonding temperature on the microstructure and mechanical properties of Hastelloy X superalloy joints bonded with a Ni–Cr–B–Si–Fe interlayer. J Manuf Process 47:129–140. https://doi.org/10.1016/j.jmapro.2019.09.030

    Article  Google Scholar 

  33. Malekan A, Farvizi M, Mirsalehi SE et al (2020) Holding time influence on creep behavior of transient liquid phase bonded joints of Hastelloy X. Mater Sci Eng A 772:138694. https://doi.org/10.1016/j.msea.2019.138694

    Article  CAS  Google Scholar 

  34. Malekan A, Mirsalehi SE, Farvizi M et al (2022) Microstructural evaluation of Hastelloy-X transient liquid phase bonded joints: effects of filler metal thickness and holding time. Trans Nonferrous Metals Soc China 32:1548–1558. https://doi.org/10.1016/S1003-6326(22)65892-8

    Article  CAS  Google Scholar 

  35. Norouzi E, Atapour M, Shamanian M, Allafchian A (2016) Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint. JMADE 99:543–551. https://doi.org/10.1016/j.matdes.2016.03.101

    Article  CAS  Google Scholar 

  36. Surendar A, Lucas A, Abbas M et al (2019) Transient liquid phase bonding of stainless steel 316 L to Ti-6Al-4 V using Cu / Ni multi-interlayer: microstructure, mechanical properties, and fractography. https://doi.org/10.1007/s40194-019-00742-z

  37. Ceramics A, Ceramics A, Hardness AB et al (17AD) Standard test method for microindentation hardness of materials BT - standard test method for microindentation hardness of materials. i: https://doi.org/10.1520/E0384-16

  38. Smith BD, Shih DS, Mcdowell DL (2018) Cyclic plasticity experiments and polycrystal plasticity modeling of three distinct Ti alloy microstructures. Int J Plast 101:1–23. https://doi.org/10.1016/j.ijplas.2013.10.004

    Article  CAS  Google Scholar 

  39. Nastac L, Gungor MN, Ucok I et al (2006) Advances in investment casting of Ti – 6Al – 4V alloy: a review. 19:73–93. https://doi.org/10.1179/136404605225023225

  40. Rahimi A (2018) A comparative study on direct and pulsed current micro-plasma arc welding of alloy Ti – 6Al – 4V. Trans Indian Inst Met 71:3103–3110. https://doi.org/10.1007/s12666-018-1501-y

    Article  CAS  Google Scholar 

  41. Yang Z, Chen Y, Niu S et al (2020) Phase transition, microstructural evolution and mechanical properties with Ti – Zr – Ni – Cu filler metal. Arch Civ Mech Eng 3:1–15. https://doi.org/10.1007/s43452-020-00093-3

    Article  Google Scholar 

  42. Gunen A, Kanca E (2017) Microstructure and mechanical properties of borided Inconel 625 superalloy

  43. Temperatures E Mechanical behavior of Inconel 625 at elevated temperatures. https://doi.org/10.3390/met9030301

  44. Davoodi A, Khorram A, Jafari A (2017) Characterization of microstructure and mechanical properties of dissimilar TLP bonding between IN718 / IN600 with BNi-2 interlayer. J Manuf Process 29:447–457. https://doi.org/10.1016/j.jmapro.2017.09.010

    Article  Google Scholar 

  45. International ASM ASM metals handbook volume 3 Alloy phase diagrams

  46. Sadeghian A, Arhami F, Mirsalehi SE (2019) Phase formation during dissimilar transient liquid phase ( TLP ) bonding of IN939 to IN625 using a Ni-Cr-Fe-Si-B interlayer. J Manuf Process 44:72–80. https://doi.org/10.1016/j.jmapro.2019.05.027

    Article  Google Scholar 

  47. Fayegh A (2021) Interfacial microstructure and mechanical properties of transient liquid phase bonded IN718 / Ti-6Al-4V joints. 1955–1968. https://doi.org/10.1007/s40194-021-01134-y

  48. Zakipour S, Halvaee A, Amadeh AA et al (2015) An investigation on microstructure evolution and mechanical properties during transient liquid phase bonding of stainless steel 316L to Ti-6Al-4V. J Alloy Compd 626:269–276. https://doi.org/10.1016/j.jallcom.2014.11.160

    Article  CAS  Google Scholar 

  49. Liu K, Li Y, Xia C, Wang J (2017) Microstructural evolution and properties of TLP diffusion bonding super-Ni / NiCr laminated composite to Ti-6Al-4V alloy with Cu interlayer. Mater Des 135:184–196. https://doi.org/10.1016/j.matdes.2017.09.028

    Article  CAS  Google Scholar 

  50. Vazirian S, Farzadi A (2020) Effect of bonding temperature on microstructure and mechanical properties of dissimilar joint between Ti – 6Al – 4V and Co – Cr – Mo biomaterials 792. https://doi.org/10.1016/j.msea.2020.139825

  51. Wang Z, Guo Y, Ren L et al (2021) Effect of bonding temperature on microstructure and mechanical properties of 304L / Zircaloy-4 diffusion-bonded joints with Ni / Ta hybrid interlayer. 2100555:1–9. https://doi.org/10.1002/adem.202100555

  52. Zhang H, Liu X, Zhang B, Guo Y (2022) Enhancing the mechanical performances of friction stir lap welded Al-Zn-Mg-Cu alloy joint by promoting diffusion of alloying element Zn toward the pre-positioned Cu interlayer. Mater Sci Eng A 832:142467. https://doi.org/10.1016/j.msea.2021.142467

    Article  CAS  Google Scholar 

  53. msiwp.com. http://www.matport.com MSITM (2006) Co-Ni-Ti (cobalt-nickel-titanium) light metal ternary systems: phase diagrams, crystallographic and thermodynamic data. Light Metal Systems Part 4: Selected Systems from Al-Si-Ti to Ni-Si-Ti 1–9

  54. Qin Q, Peng H, Fan Q et al (2018) Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys. J Alloy Compd 739:873–881. https://doi.org/10.1016/j.jallcom.2017.12.128

    Article  CAS  Google Scholar 

  55. Mozzon M (1991) Chemical kinetics: the study of reaction rates in solution. Wiley-VCH Verlag GmbH

  56. Lippold JC, Kiser SD, DuPont JN (2011) Welding metallurgy and weldability of nickel-base alloys. John Wiley & Sons

    Google Scholar 

  57. Gupta KP (2003) The Cr-Ni-Ti (chromium-nickel-titanium) system-update. J Phase Equilib 24:86–89. https://doi.org/10.1007/s11669-003-0019-z

    CAS  Google Scholar 

  58. Doroudi A, Shamsipur A, Omidvar H, Vatanara M (2019) Effect of transient liquid phase bonding time on the microstructure, isothermal solidification completion and the mechanical properties during bonding of Inconel 625 superalloy using Cr-Si-B-Ni filler metal. J Manuf Process 38:235–243. https://doi.org/10.1016/j.jmapro.2019.01.019

    Article  Google Scholar 

  59. Jalali A, Atapour M, Shamanian M, Vahman M (2018) Transient liquid phase (TLP) bonding of Ti-6Al-4V/UNS 32750 super duplex stainless steel. J Manuf Process 33:194–202. https://doi.org/10.1016/j.jmapro.2018.05.014

    Article  Google Scholar 

  60. Alishavandi M, Amin M, Khollari R, Ebadi M (2020) Corrosion-wear behavior of AA1050 / mischmetal oxides surface nanocomposite fabricated by friction stir processing. J Alloy Compd 832:153964. https://doi.org/10.1016/j.jallcom.2020.153964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Behnam Zorriatolhosseini: writing—original draft, formal analysis, methodology, validation, investigation, data curation, and conceptualization; Seyyed Ehsan Mirsalehi: writing—review and editing, supervision, methodology, validation, and project administration; Faezeh Shamsi: investigation, visualization, software, data curation, and writing—review and editing.

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorriatolhosseini, B., Mirsalehi, S.E. & Shamsi, F. Dissimilar transient liquid phase bonding of Ti-6Al-4V alloy to Inconel 625 superalloy: effect of bonding temperature on microstructural evolutions and mechanical properties. Weld World (2024). https://doi.org/10.1007/s40194-024-01777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40194-024-01777-7

Keywords

Navigation