Skip to main content
Log in

Simulation and analysis of the heat transfer mechanism of arc plasma with CMT plus pulse composite heat source

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

An innovative numerical model was established to study the heat transfer mechanism with cold metal transfer plus pulse (CMT+P) composite heat source based on the in situ observation experiments as well as theories of electromagnetic dynamics, fluid dynamics, and thermodynamics. The distribution of temperature, potential, current density, velocity, and pressure within the arc plasma was quantitatively analyzed. The results show that the physical fields of the arc plasma with CMT+P composite heat source, such as temperature, electricity, velocity and pressure, were related not only to the input current, but also to the discharge distance between the electrodes. The closer the physical fields of the arc plasma were to the anode, the faster response rate to the current variations and the weaker time delay effect. In addition, the closer the distance between two electrodes, the more concentrated the temperature. There was a negative correlation between the distribution of potential and current density corresponding to the surface of the molten region at different moments. With the completion of the short-circuit phase, the arc plasma was reignited and converged towards the wire end under electromagnetic pinch force. The high-speed axial vortices were generated again at the wire end, which promoted the shrinkage of the liquid metal section and accelerated the splashing of free droplets. Moreover, the distribution of temperature, potential, current density, pressure, and velocity on the substrate surface had a time delay effect with the input current during the pulse phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rodriguez N, Vázquez L, Huarte I et al (2018) Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Weld World 62:1083–1096. https://doi.org/10.1007/s40194-018-0606-6

    Article  CAS  Google Scholar 

  2. Kumar Sinha A, Pramanik S, Yagati KP (2022) Research progress in arc based additive manufacturing of aluminium alloys—a review. Measurement 200:111672. https://doi.org/10.1016/j.measurement.2022.111672

    Article  Google Scholar 

  3. Mamat SB, Tashiro S, Masri MN et al (2020) Application of pulse plasma MIG welding process to Al/steel dissimilar joining. Weld World 64:857–871. https://doi.org/10.1007/s40194-020-00879-2

    Article  CAS  Google Scholar 

  4. Sahoo A, Tripathy S (2021) Numerical analysis of metal transfer process in plasma MIG welding. Mater Today Proc 41:363–368. https://doi.org/10.1016/j.matpr.2020.09.562

    Article  CAS  Google Scholar 

  5. Tashiro S, Mamat SB, Murphy AB et al (2022) Numerical analysis of metal transfer process in plasma MIG welding. Metal 12:326. https://doi.org/10.3390/met12020326

    Article  CAS  Google Scholar 

  6. Velázquez-Sánchez A, Delgado-Álvarez A, Méndez PF et al (2021) Dominant heat transfer mechanisms in the GTAW plasma arc column. Plasma Chem Plasma Process 41:1497–1515. https://doi.org/10.1007/s11090-021-10192-5

    Article  CAS  Google Scholar 

  7. Béraud N, Chergui A, Limousin M et al (2022) An indicator of porosity through simulation of melt pool volume in aluminum wire arc additive manufacturing. Mech Ind 23:1–8. https://doi.org/10.1051/meca/2021052

    Article  CAS  Google Scholar 

  8. Pickin CG, Williams SW, Lunt M (2010) Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol 211(3):496–502. https://doi.org/10.1016/j.jmatprotec.2010.11.005

    Article  CAS  Google Scholar 

  9. Wei Y, Liu F, Liu F et al (2023) Effect of arc oscillation on porosity and mechanical properties of 2319 aluminum alloy fabricated by CMT-wire arc additive manufacturing. J Mater Res Technol 24:3477–3490. https://doi.org/10.1016/j.jmrt.2023.03.203

    Article  CAS  Google Scholar 

  10. Dharmik BY, Lautre NK (2023) CMT and GTA welding on microstructural characteristics and magnetic performance of thin CRNO electrical steel sheets. Mater Chem Phys 295:127128. https://doi.org/10.1016/j.matchemphys.2022.127128

    Article  CAS  Google Scholar 

  11. Cong BQ, Ding JL, Williams S (2015) Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol 76:1593–1606. https://doi.org/10.1007/s00170-014-6346-x

    Article  Google Scholar 

  12. Cong BQ, Ouyang RJ, Qi BJ et al (2016) Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Metal Mater Eng 45:606–611. https://doi.org/10.1016/S1875-5372(16)30080-7

    Article  CAS  Google Scholar 

  13. Huan P, Wang X, Zhang J et al (2020) Effect of wire composition on microstructure and properties of 6063 aluminium alloy hybrid synchronous pulse CMT welded joints. Mater Sci Eng A 790:139713. https://doi.org/10.1016/j.msea.2020.139713

    Article  CAS  Google Scholar 

  14. Pramod Kumar G, Balasubramanian HR (2023) Experimental investigation on high temperature tensile behavior of cold metal transfer pulse multi-control welding of Inconel 617 alloy. Results Surf Interfaces 10:100100. https://doi.org/10.1016/j.rsurfi.2023.100100

    Article  Google Scholar 

  15. Cai HY, Xu LY, Zhao L et al (2022) Cold metal transfer plus pulse (CMT+P) welding of G115 steel: mechanisms, microstructure, and mechanical properties. Mater Sci Eng A 843:143156. https://doi.org/10.1016/j.msea.2022.143156

    Article  CAS  Google Scholar 

  16. Pang J, Hu SS, Shen JQ et al (2016) Arc characteristics and metal transfer behavior of CMT+P welding process. J Mater Process Technol 238:212–217. https://doi.org/10.1016/j.jmatprotec.2016.07.033

    Article  CAS  Google Scholar 

  17. Xie B, Xue JX, Ren XH (2020) Wire arc deposition additive manufacturing and experimental study of 316L stainless steel by CMT + P process. Metals 10:1419. https://doi.org/10.3390/met10111419

    Article  CAS  Google Scholar 

  18. Wang XX, Fan D, Huang JK et al (2015) Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding. Int J Heat Mass Transf 85:924–934. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.132

    Article  CAS  Google Scholar 

  19. Wang XX, Zhang J, Deng Y et al (2023) Numerical investigation of the arc properties in gas tungsten arc–based additive manufacturing. Weld World. https://doi.org/10.1007/S40194-023-01473-Y

  20. Xiao L, Fan D, Huang JK (2018) Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration. J Manuf Process 32:127–137. https://doi.org/10.1016/j.jmapro.2018.01.026

    Article  Google Scholar 

  21. Xiang JT, Park H, Tanaka K et al (2019) Numerical study of the effects and transport mechanisms of iron vapour in tungsten inert-gas welding in argon. J Phys D Appl Phys 53:44004. https://doi.org/10.1088/1361-6463/ab51f3

    Article  CAS  Google Scholar 

  22. Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of a two-electrode TIG arc. J Phys D Appl Phys 44:215202. https://doi.org/10.1088/0022-3727/44/21/215202

    Article  ADS  CAS  Google Scholar 

  23. Xiao L, Fan D, Huang JK (2019) Numerical study on arc plasma behaviors in GMAW with applied axial magnetic field. J Phys Soc Jpn 88:74502. https://doi.org/10.7566/JPSJ.88.074502

    Article  Google Scholar 

  24. Wang L, Chen J, Jiang CL et al (2020) Numerical simulations of arc plasma under external magnetic field-assisted gas metal arc welding. AIP Adv 10:65030. https://doi.org/10.1063/5.0009935

    Article  CAS  Google Scholar 

  25. Xu J, Ma YM, Wang L et al (2022) Numerical investigation on the influence of current waveform on droplet transfer in pulsed gas metal arc welding. Vacuum 203:111230. https://doi.org/10.1016/j.vacuum.2022.111230

    Article  ADS  CAS  Google Scholar 

  26. Ogino Y, Hirata Y, Asai S (2018) Numerical simulation of arc plasma and molten metal behavior in gas metal arc welding process. J Fluid Sci Technol 13:T26. https://doi.org/10.1299/jfst.2018jfst0026

    Article  ADS  Google Scholar 

  27. Hertel M, Spille-Kohoff A, Füssel U et al (2013) Numerical simulation of droplet detachment in pulsed gas–metal arc welding including the influence of metal vapour. J Phys D Appl Phys 46:224001. https://doi.org/10.1088/00223727/46/22/224003

    Article  ADS  Google Scholar 

  28. Zhao YY, Chung H (2017) Numerical simulation of droplet transfer behavior in variable polarity gas metal arc welding. Int J Heat Mass Transf 111:1129–1141. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.090

    Article  Google Scholar 

  29. Xiao L, Fan D, Huang JK, Tashiro S et al (2020) Numerical study on arc-droplet coupled behavior in magnetic field controlled GMAW process. J Phys D Appl Phys 53:115202. https://doi.org/10.1088/1361-6463/ab6020

    Article  ADS  CAS  Google Scholar 

  30. Zhao WY, Jin HX, Du XW et al (2022) A 3D arc-droplet-molten pool integrated model of Al alloy GMAW process: heat transfer, fluid flow and the effect of external magnetic field. Vacuum 202:111129. https://doi.org/10.1016/j.vacuum.2022.111129

    Article  ADS  CAS  Google Scholar 

  31. Cadiou S, Courtois M, Carin M, Berckmans W, Le Masson P (2020) Heat transfer, fluid flow and electromagnetic model of droplets generation and melt pool behaviour for wire arc additive manufacturing. Int J Heat Mass Transf 148:119102. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119102

    Article  Google Scholar 

  32. Zhao W, Wei Y, Tashiro S et al (2023) Numerical investigations of arc plasma characteristic parameters evolution and metal properties in GMAW-based WAAM of Al alloy with an integrated model. J Manuf Process 99:321–337. https://doi.org/10.1016/j.jmapro.2023.05.047

    Article  Google Scholar 

  33. Cadiou S, Courtois M, Carin M, Berckmans W, Le Masson P (2020) 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam). Addit Manuf 36:101541. https://doi.org/10.1016/j.addma.2020.101541

    Article  CAS  Google Scholar 

  34. Zhao W, Tashiro S, Murphy AB et al (2023) Deepening the understanding of arc characteristics and metal properties in GMAW-based WAAM with wire retraction via a multi-physics model. J Manuf Process 97:260–274. https://doi.org/10.1016/j.jmapro.2023.05.008

    Article  Google Scholar 

  35. Zhou S, Xie H, Ni J et al (2022) Metal transfer behavior during CMT-based wire arc additive manufacturing of Ti-6Al-4V alloy. J Manuf Process 82:159–173. https://doi.org/10.1016/j.jmapro.2022.07.063

    Article  Google Scholar 

  36. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001. https://doi.org/10.1088/0022-3727/43/43/434001

    Article  ADS  CAS  Google Scholar 

  37. Chen GQ, Liu JP, Shu X et al (2019) Numerical simulation of keyhole morphology and molten pool flow behavior in aluminum alloy electron-beam welding. Int J Heat Mass Transf 138:879–888. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.112

    Article  CAS  Google Scholar 

  38. Essoltani A, Proulx P, Boulos MI et al (1994) Volumetric emission of argon plasmas in the presence of vapors of Fe, Si, and Al. Plasma Chem Plasma Process 14:437–450. https://doi.org/10.1007/BF01570206

    Article  CAS  Google Scholar 

  39. Gleizes A, Gonzalez JJ, Liani B et al (1993) Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour. J Phys D Appl Phys 26:1921–1927. https://doi.org/10.1088/0022-3727/26/11/013

    Article  ADS  CAS  Google Scholar 

  40. Zhang Z, Yan J, Lu X et al (2023) Optimization of porosity andsurface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. J Mater Res Technol 24:6923–6941. https://doi.org/10.1016/j.jmrt.2023.04.259

    Article  CAS  Google Scholar 

  41. Ikram A, Chung H (2021) Numerical simulation of arc, metal transfer and its impingement on weld pool in variable polarity gas metal arc welding. J Manuf Process 64:1529–1543. https://doi.org/10.1016/j.jmapro.2021.03.001

    Article  Google Scholar 

  42. Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40(26):R1–R23. https://doi.org/10.1088/0022-3727/40/1/R01

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors sincerely appreciate the financial support to this research from the Aeronautical Science Foundation of China [Grant Number 2020Z049067002]; the Natural Science Foundation of Tianjin City [Grant Number 22JCYBJC01280]; the Fundamental Research Funds for the Central Universities of China [Grant Number 3122023039]; the National Natural Science Foundation of China [Grant Number 51905536]; and the Tianjin Research Innovation Project for Postgraduate Students [Grant Number 2022SKY152].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Zhang or Lianyong Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gou, Q., Zhang, T. et al. Simulation and analysis of the heat transfer mechanism of arc plasma with CMT plus pulse composite heat source. Weld World 68, 525–541 (2024). https://doi.org/10.1007/s40194-023-01594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01594-4

Keywords

Navigation