Skip to main content
Log in

Laser-hybrid welding of 4716MA0 nickel-based alloy: effects of laser power on microstructure and properties

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Nickel-based alloy 4716MA0 is a new developed alloy by an enterprise. It has great application potential in high-temperature petrochemical equipment because of its good high-temperature properties. In this paper, the weldability of laser-melt inert gas (laser-MIG) hybrid welding on the Ni-based alloy sheet with 3-mm thickness was studied. It is found that there are mainly two kinds of solidification structures in the weld: columnar dendrite and equiaxed dendrite. During the solidification process of the weld, with the increase of laser power, the dendrite coarsens, the amount of Laves phase precipitates increases and the hardness increases. The hardness of the joint is W-shaped, and there is softening phenomenon in the heat-affected zone. In addition, it is found that the area of shrinkage porosity in the center of the weld decreases with the increase of laser power, which is mainly related to the flow velocity of molten metal in the weld pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article.

References

  1. Svistanova TV (1994) Nickel-base corrosion-resistant alloys [J]. Met Sci Heat Treat 36(9):456–461. https://doi.org/10.1007/BF01395903

    Article  Google Scholar 

  2. Karmakar R, Maji P, Ghosh SK (2021) A review on the nickel based metal matrix composite coating [J]. Met Mater Int 27(7):2134–2145. https://doi.org/10.1007/s12540-020-00872-w

    Article  CAS  Google Scholar 

  3. Klapper HS, Zadorozne NS, Rebak RB (2017) Localized corrosion characteristics of nickel alloys: a review [J]. Acta Metallurgica Sinica (English Letters) 30(4):296–305. https://doi.org/10.1007/s40195-017-0553-z

    Article  Google Scholar 

  4. Sequeira CAC, Cardoso DSP, Amaral L, et al. On the performance of commercially available corrosion-resistant nickel alloys: a review [J]. 2016, 34(4): 187-200. https://doi.org/10.1515/corrrev-2016-0014

  5. Lu X, Ma Y, Wang D (2020) On the hydrogen embrittlement behavior of nickel-based alloys: alloys 718 and 725 [J]. Mater Sci Eng: A 792:139785. https://doi.org/10.1016/j.msea.2020.139785

    Article  CAS  Google Scholar 

  6. Li Y, Li Y, Feng Y, et al. Investigation on the morphology and formation mechanism of porosity in different heat source regions of nickel-based alloy laser hybrid welding [J]. J Mater Eng Perform, 2023, https://doi.org/10.1007/s11665-023-08409-z

  7. Herold H, Zinke M, HüBNER A (2005) Investigations on the use of nitrogen shielding gas in welding and its influence on the hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base alloys [J]. Weld World 49(5):50–63. https://doi.org/10.1007/BF03263410

    Article  CAS  Google Scholar 

  8. Zhang Q (2021) Welding metallurgy and weldability of nickel based alloys Wiley [J]. Res Metal Mater 4:44–59

    Google Scholar 

  9. Yongtao H (2021) Review of research methods on weldability of nickel-based alloys [J]. MW Metal Form 8:19–23

    Google Scholar 

  10. Savchenko VS, Yushchenko KA, Zvjagintseva A et al (2007) Investigation of structure and crack formation in welded joints of single crystal Ni-base alloys [J]. Weld World 51(11):76–81. https://doi.org/10.1007/BF03266611

    Article  CAS  Google Scholar 

  11. Zheng Q, Feng X, Shen Y et al (2017) Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy [J]. J Alloys Comp 695:952–961. https://doi.org/10.1016/j.jallcom.2016.10.213

    Article  CAS  Google Scholar 

  12. Ogborn JS, Olson DL, Cieslak MJ (1995) Influence of solidification on the microstructural evolution of nickel base weld metal [J]. Mater Sci Eng: A 203(1):134–139. https://doi.org/10.1016/0921-5093(95)09832-1

    Article  Google Scholar 

  13. Chiang MF, Chen C (2009) Induction-assisted laser welding of IN-738 nickel–base superalloy [J]. Mater Chem Phys 114(1):415–419. https://doi.org/10.1016/j.matchemphys.2008.09.051

    Article  CAS  Google Scholar 

  14. Ribic B, Palmer TA, Debroy T (2009) Problems and issues in laser-arc hybrid welding [J]. Int Mater Rev 54(4):223–244. https://doi.org/10.1179/174328009X411163

    Article  CAS  Google Scholar 

  15. Yang M, Lu J, Li Y et al (2020) Effects of the wire feeding speed on the mechanical properties and electrochemical corrosion behaviors of a hybrid laser-MAG welded X90 pipeline steel [J]. Int J Electrochem Sci 15(10):9811–9823. https://doi.org/10.20964/2020.10.61

    Article  CAS  Google Scholar 

  16. Yang M, Liu Y, Zhang J et al (2018) Hybrid laser-arc welding of X90 pipeline steel: effect of laser power on microstructure and mechanical properties [J]. Trans Indian Inst Met 71(10):2487–2496. https://doi.org/10.1007/s12666-018-1379-8

    Article  CAS  Google Scholar 

  17. Benyounis KY, Olabi AG, Hashmi MSJ (2005) Effect of laser welding parameters on the heat input and weld-bead profile [J]. J Mater Process Technol 164–165:978–985. https://doi.org/10.1016/j.jmatprotec.2005.02.060

    Article  CAS  Google Scholar 

  18. Yang M, Lu J, Wang H et al (2021) Effect of the laser power on the microstructure and mechanical properties of the laser-MIG hybrid welding joints of the 2195 Al–Li alloy [J]. Sci Technol Weld Join 26(1):75–83. https://doi.org/10.1080/13621718.2020.1837482

    Article  CAS  Google Scholar 

  19. Zhao YY, Zhang YS, Hu W (2013) Effect of welding speed on microstructure, hardness and tensile properties in laser welding of advanced high strength steel [J]. Sci Technol Weld Join 18(7):581–590. https://doi.org/10.1179/1362171813Y.0000000140

    Article  CAS  Google Scholar 

  20. Dos Santos Paes LE, Pereira M, De Souza Pinto Pereira A et al (2019) Power and welding speed influence on bead quality for overlapped joint laser welding [J]. J Laser Appl 31(2):022403. https://doi.org/10.2351/1.5096110

    Article  Google Scholar 

  21. Khot Rahul S, Venkateswara Rao T, Keskar A et al (2020) Investigation on the effect of power and velocity of laser beam welding on the butt weld joint on TRIP steel [J]. J Laser Appl 32(1):012016. https://doi.org/10.2351/1.5133158

    Article  CAS  Google Scholar 

  22. Liu S, Mi G, Yan F et al (2017) Correlation of high power laser welding parameters with real weld geometry and microstructure [J]. Opt Laser Technol 94:59–67. https://doi.org/10.1016/j.optlastec.2017.03.004

    Article  CAS  Google Scholar 

  23. Tan C, Liu Y, Liu F et al (2022) Effect of laser power on laser joining of carbon fiber reinforced plastic to AZ31B Mg alloy [J]. Opt Laser Technol 145:107449. https://doi.org/10.1016/j.optlastec.2021.107449

    Article  CAS  Google Scholar 

  24. Zhu Y, Cai Y, Dong H et al (2022) Tailoring droplet transfer and molten pool flow during hybrid laser arc welding of nickel base alloy [J]. Opt Laser Technol 147:107620. https://doi.org/10.1016/j.optlastec.2021.107620

    Article  CAS  Google Scholar 

  25. Ola OT, Ojo OA, Chaturvedi MC (2013) Laser arc hybrid weld microstructure in nickel based IN738 superalloy [J]. Mater Sci Technol 29(4):426–438. https://doi.org/10.1179/1743284712Y.0000000129

    Article  CAS  Google Scholar 

  26. Cheng Hao ZL, Liu JIAN, Wang YUNING, Toning LINGYUN, Du DONG (2023) Effect of heat input on microstructure and mechanical properties of laser welded joint of Inconel 617 nickel-based superalloy [J] 51(1): 113–121. https://doi.org/10.11868/j.issn.1001-4381.2021.000790

  27. Du M, Wang W, Zhang X et al (2022) Influence of laser power on microstructure and mechanical properties of laser welded TWIP steel butted joint [J]. Opt Laser Technol 149:107911. https://doi.org/10.1016/j.optlastec.2022.107911

    Article  CAS  Google Scholar 

  28. Wang L, Li H, Wang K et al (2022) Simulation of heat transfer and dendrite growth during the arc deposition of nickel-based superalloy via finite element-phase field modeling [J]. Appl Phys A 128(5):447. https://doi.org/10.1007/s00339-022-05544-7

    Article  CAS  Google Scholar 

  29. Ran Q, Xiang S, Tan Y et al (2021) Effect of heat input on microstructure and mechanical properties of GH159 and GH4169 dissimilar joints by laser beam welding [J]. Mater Res Express 8(8):086520. https://doi.org/10.1088/2053-1591/ac1eca

    Article  CAS  Google Scholar 

  30. Xiaofeng SYLJLZYJLJJTS (2013) Microstructure and mechanical properties of DD5 single crystal superalloy brazing joint [J]. ACTA METALLURGICA SINICA 49(12): 1581–1589 https://doi.org/10.3724/SP.J.1037.2013.00406

  31. Sun Y, Liu J, Li B et al (2014) Microstructure evolution of single crystal superalloy DD5 joints brazed using AWS BNi-2 filler alloy [J]. Mater Res Innov 18(sup4):S4-341-S4-6. https://doi.org/10.1179/1432891714Z.000000000699

    Article  CAS  Google Scholar 

  32. Wang G, Yang Y, Wu P et al (2019) Effect of brazing temperature on microstructure and mechanical properties of TiAl/ZrB2 joint brazed with CuTiZrNi filler [J]. J Manuf Process 46:170–176. https://doi.org/10.1016/j.jmapro.2019.09.001

    Article  Google Scholar 

  33. Xuechao XTPXZMTMLHL (2021) Shrinkage porosity in nickel-based single crystal superalloy [J]. Rare Metal Mater Eng 50:1113–1117

    Google Scholar 

  34. Mizutani SKYKM (2009) Understanding of laser and hybrid welding phenomena [J]. Mater Sci Forum 580–582:535–538. https://doi.org/10.4028/www.scientific.net/MSF.580-582.535

    Article  Google Scholar 

  35. Wu CS, Zhang HT, Chen J (2017) Numerical simulation of keyhole behaviors and fluid dynamics in laser–gas metal arc hybrid welding of ferrite stainless steel plates [J]. J Manuf Process 25:235–245. https://doi.org/10.1016/j.jmapro.2016.11.009

    Article  Google Scholar 

  36. Ji-Xue CY-JDLZZL (2020) Research on in-situ heating and stretching of the third-generation nickel-based single crystal superalloy [J]. J Chin Electron Microscopy Soc 39(3):233–237

    Google Scholar 

  37. Hai YXCXLJZFZGYYL (2021) Effect of heat treatment on grain boundary and tensile behavior of selective laser melting GH3536 alloy [J]. Rare Metal Mater Eng 50(4):1296–1303

    Google Scholar 

Download references

Funding

This research work was supported by the Natural Science Foundation of Sichuan Province of China (2022NSFSC0325) and State Key Laboratory of Long-life High-Temperature Materials (DTCC28EE200795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IV - Power Beam Processes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Zhang, Y. et al. Laser-hybrid welding of 4716MA0 nickel-based alloy: effects of laser power on microstructure and properties. Weld World 67, 2225–2234 (2023). https://doi.org/10.1007/s40194-023-01561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01561-z

Keywords

Navigation