Hou W, Zhang D, Wei Y et al (2020) Review on computer aided weld defect detection from radiography images[J]. Appl Sci 10(5):1878. https://doi.org/10.3390/app10051878
CAS
Article
Google Scholar
Fan Ding, Hu Ande, Huang Jiankang, Xu Zhenya, Xu Xu (2020) Defect recognition method of X-ray image of pipe weld based on improved convolution neural network[J]. Trans China Weld Inst 41(01):7-11+97 CNKI:SUN:HJXB.0.2020-01-002
Mery D, Arteta C (2017) Automatic defect recognition in x-ray testing using computer vision. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp. 1026–1035. https://doi.org/10.1109/WACV.2017.119
Cheng Y, Chen S, Xiao J et al (2021) Dynamic estimation of joint penetration by deep learning from weld pool image[J]. Sci Technol Weld Join 26(4):279–285. https://doi.org/10.1080/13621718.2021.1896141
Article
Google Scholar
Li C, Wang Q, Jiao W, et al. (2020) Deep learning-based detection of penetration from weld pool reflection images[J]. Weld J 99(9):239S–245S https://doi.org/10.29391/2020.99.022
Sundaram M, Jose J P, Jaffino G (2015) Welding defects extraction for radiographic images using C-means segmentation method[C]//International Conference on Communication and Network Technologies. IEEE 79–83 https://doi.org/10.1109/CNT.2014.7062729
Ajmi C, Zapata J, Elferchichi S et al (2020) Deep learning technology for weld defects classification based on transfer learning and activation features[J]. Adv Mater Sci Eng 2020(1):1–16. https://doi.org/10.1155/2020/1574350
Article
Google Scholar
Khumaidi A, Yuniarno EM, Purnomo MH (2017) Welding defect classification based on convolution neural network (CNN) and Gaussian kernel. In: 2017 international seminar on intelligent technology and its applications (ISITIA). IEEE, pp. 261–265. https://doi.org/10.1109/ISITIA.2017.8124091
Ajmi C, El Ferchichi S, Laabidi K (2018) New procedure for weld defect detection based-gabor filter. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE, pp. 11–16. https://doi.org/10.1109/ASET.2018.8379826
Zhang H, Chen Z, Zhang C, Xi J, Le X (2019) Weld defect detection based on deep learning method. In: 2019 IEEE 15th international conference on automation science and engineering (CASE). IEEE, pp. 1574–1579. https://doi.org/10.1109/COASE.2019.8842998
Liu Mengxi, Ju Yongfeng, Gao Weixin, et al. (2018) Research on X-ray weld defects detection by deep CNN[J]. Transducer Microsyst Technol 37(05):37–39 https://doi.org/10.13873/J.1000-9787(2018)05-0037-03
Liu H, Guo R (2018) Defect detection and recognition of petroleum steel pipe welds based on X-ray image and convolutional neural network [J]. Chin J Sci Instrum 39(4):247–256 https://doi.org/10.19650/j.cnki.cjsi.J1702865
Liong ST, Gan YS, Huang YC, et al. (2019) Integrated neural network and machine vision approach for leather defect classification[J]. arXiv preprint arXiv:1905.11731. arxiv-1905.11731
Zhang Z, Wen G, Chen S (2019) Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J Manuf Process 45:208–216. https://doi.org/10.1016/j.jmapro.2019.06.023
Article
Google Scholar
Liu M, Xie J, Hao J et al (2022) A lightweight and accurate recognition framework for signs of X-ray weld images[J]. Comput Ind 135:103559. https://doi.org/10.1016/j.compind.2021.103559
Article
Google Scholar
Jiang H, Hu Q, Zhi Z et al (2021) Convolution neural network model with improved pooling strategy and feature selection for weld defect recognition[J]. Weld World 65(4):731–744. https://doi.org/10.1007/s40194-020-01027-6
Article
Google Scholar
Hou W, Wei Y, Jin Y et al (2019) Unbalanced weld flaw types[J]. ]. Deep features based on a DCNN model for classifying. Measurement 131:482–489. https://doi.org/10.1016/j.measurement.2018.09.011
Article
Google Scholar
Ren S, He K, Girshick R, et al. (2015) Faster r-cnn: towards real-time object detection with region proposal networks[J]. arXiv preprint arXiv:1506.01497 https://doi.org/10.1109/TPAMI.2016.2577031
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779–788. https://doi.org/10.1109/CVPR.2016.91
Liu W, Anguelov D, Erhan D, et al. (2016) Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, Cham, 21–37 https://doi.org/10.1007/978-3-319-46448-0_2
Cai Z, Vasconcelos N (2018) Cascade R-CNN: delving into high quality object detection. IEEE/CVF Conf Comput Vis Pattern Recognit 2018:6154–6162. https://doi.org/10.1109/CVPR.2018.00644
Article
Google Scholar
Li Y, Chen Y, Wang N, Zhang Z (2019) Scale-aware trident networks for object detection. IEEE/CVF Int Conf Comput Vis (ICCV) 2019:6053–6062. https://doi.org/10.1109/ICCV.2019.00615
Article
Google Scholar
Zhang H, Chang H, Ma B, Wang N, Chen X (2020) Dynamic R-CNN: towards high quality object detection via dynamic training. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12360. Springer, Cham https://doi.org/10.1007/978-3-030-58555-6_16
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556 arXiv:1409.1556
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 7132–7141 https://doi.org/10.1109/TPAMI.2019.2913372
Woo S, Park J, Lee J, Kweon I (2018) CBAM: convolutional block attention module. ECCV. https://doi.org/10.1007/978-3-030-01234-2_1
Article
Google Scholar
He K, Zhang X, Ren S, et al. (2016) Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778 arxiv-1512.03385
Jang J, Van D, Jang H et al (2020) Residual neural network-based fully convolutional network for microstructure segmentation[J]. Sci Technol Weld Join 25(4):282–289. https://doi.org/10.1080/13621718.2019.1687635
CAS
Article
Google Scholar
Gong Y, Yu X, Ding Y, Peng X, Zhao J, Han Z (2021) Effective fusion factor in FPN for tiny object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1160–1168. https://doi.org/10.1109/WACV48630.2021.00120
Yu J, Jiang Y, Wang Z, Cao Z, Huang T (2016) Unitbox: an advanced object detection network. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520. https://doi.org/10.1145/2964284.2967274
Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) Distance-IoU Loss: faster and better learning for bounding box regression. Proc AAAI Conf Artif Intell 34(07):12993–13000. https://doi.org/10.1609/aaai.v34i07.6999
Article
Google Scholar
Wang B, Hu SJ, Sun L, et al. (2020) Intelligent welding system technologies: state-of-the-art review and perspectives[J]. J Manuf Syst 56 https://doi.org/10.1016/j.jmsy.2020.06.020
Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar M, Lee B (2022). A survey of modern deep learning based object detection models. Digital Signal Processing, 103514. https://doi.org/10.48550/arXiv.2104.11892
Wan S, Goudos S (2020) Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Comput Netw 168:107036. https://doi.org/10.1016/j.comnet.2019.107036
Article
Google Scholar